

Welcome to pyPreservica’s documentation

[image: _images/pyPreservica.svg]
 [https://pepy.tech/project/pyPreservica][image: _images/pyPreservica1.svg]
 [https://pypi.org/project/pyPreservica/][image: _images/pyPreservica2.svg]
 [https://pypi.org/project/pyPreservica/][image: _images/pyPreservica3.svg]
 [https://pypi.org/project/pyPreservica/]pyPreservica is a Python client for the Preservica API Services

This library provides a Python class for working with the Preservica Rest API

https://developers.preservica.com/api-reference

This version of the documentation is for use against a Preservica 6.2 system

For Preservica 6.0 and 6.1 see the previous version [https://pypreservica.readthedocs.io/en/v6.1/]

Table of Contents

	Why Should I Use This?

	Entity API Features

	Content API Features

	Upload API Features

	Background

	PIP Installation

	Get the Source Code

	Contributing

	Example

	Authentication

	SSL Certificates

	The User Guide

	Entity API

	Fetching Entities (Assets, Folders & Content Objects)

	Fetching Children of Entities

	Creating new Folders

	Updating Entities

	3rd Party External Identifiers

	Descriptive Metadata

	Representations, Content Objects & Generations

	Integrity Check History

	Moving Entities

	Deleting Entities

	Finding Updated Entities

	Add or remove asset and folder icons

	Replacing Content Objects

	Export OPEX Package

	Content API

	object-details

	indexed-fields

	Search

	Upload API

	Uploading Packages

	Monitoring Upload Progress

	Creating Packages

	Custom Fixity Generation

	Spreadsheet Metadata

	Ingest Web Video

	Entity API Developer Interface

	Content API Developer Interface

	Upload API Developer Interface

	Example Applications

Why Should I Use This?

The goal of pyPreservica is to allow you to make use of the Preservica Entity API for reading and writing objects within
a Preservica repository without having to manage the underlying REST HTTPS requests and XML parsing.
The library provides a level of abstraction which reflects the underlying data model, such as structural and
information objects.

The pyPreservica library allows Preservica users to build applications which interact with the repository such as metadata
synchronisation with 3rd party systems etc.

Hint

Access to the Preservica API’s for the cloud hosted system does depend on which Preservica Edition has been
licensed. See https://preservica.com/digital-archive-software/products-editions for details.

Entity API Features

	Fetch and Update Entity Objects (Folders, Assets, Content Objects)

	Add, Delete and Update External Identifiers

	Add, Delete and Update Descriptive Metadata Fragments

	Change Security tags on Folders and Assets

	Create new Folder Entities

	Move Assets and Folders within the repository

	Deleting Assets and Folders (New in 6.2)

	Fetch Folders and Assets belonging to parent Folders

	Retrieve Representations, Generations & Bitstreams from Assets

	Download digital files and thumbnails

	Fetch lists of changed entities over the last n days

	Request information on completed integrity checks (New in 6.2)

	Add or remove asset and folder icons (New in 6.2)

	Replace existing content objects within an Asset (New in 6.2)

	Export OPEX Package (New in 6.2)

Content API Features

	Fetch a list of indexed Solr Fields

	Search based on a single query term

Upload API Features

	Create single Content Object Packages with multiple Representations

	Create multiple Content Object Packages with multiple Representations

	Upload packages to Preservica

	Spreadsheet Metadata

	Ingest Web Video

Background

They key to working with the pyPreservica library is that the services follow the Preservica core data model closely.

[image: _images/entity-API.jpg]
The Preservica data model represents a hierarchy of entities, starting with the structural objects which are used to
represent aggregations of digital assets. Structural objects define the organisation of the data. In a library context
they may be referred to as collections, in an archival context they may be Fonds, Sub-Fonds, Series etc and in a
records management context they could be simply a hierarchy of folders or directories.

These structural objects may contain other structural objects in the same way as a computer filesystem may contain
folders within folders.

Within the structural objects comes the information objects. These objects which are sometimes referred to as the
digital assets are what PREMIS defines as an Intellectual Entity. Information objects are considered a single
intellectual unit for purposes of management and description: for example, a book, document, map, photograph or database etc.

Representations are used to define how the information object are composed in terms of technology and structure.
For example, a book may be represented as a single multiple page PDF, a single eBook file or a set of single page image files.

Representations are usually associated with a use case such as access or long-term preservation.
All Information objects have a least one representation defined by default. Multiple representations can be either
created outside of Preservica through a process such as digitisation or within Preservica through preservation processes such a normalisation.

Content Objects represent the components of the asset. Simple assets such as digital images may only contain a
single content object whereas more complex assets such as books or 3d models may contain multiple content objects.
In most cases content objects will map directly to digital files or bitstreams.

Generations represent changes to content objects over time, as formats become obsolete new generations may need
to be created to make the information accessible.

Bitstreams represent the actual computer files as ingested into Preservica, i.e. the TIFF photograph or the PDF document.

PIP Installation

pyPreservica is available from the Python Package Index (PyPI)

https://pypi.org/project/pyPreservica/

pyPreservica is built and tested against Python 3.8. Older versions of Python may not work.

To install pyPreservica, simply run this simple command in your terminal of choice:

$ pip install pyPreservica

or you can install in a virtual python environment using:

$ pipenv install pyPreservica

pyPreservica is under active development and the latest version is installed using

$ pip install --upgrade pyPreservica

Get the Source Code

pyPreservica is developed on GitHub, where the code is
always available [https://github.com/carj/pyPreservica].

You can clone the public repository:

$ git clone git://github.com/carj/pyPreservica.git

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/carj/pyPreservica

For announcements about new versions and discussion of pyPreservica please subscribe to the google groups
forum https://groups.google.com/g/pypreservica

Example

Create the entity API client object and request an Asset (Information Object) by its unique identifier

>>> from pyPreservica import *
>>> client = EntityAPI()
>>> client
pyPreservica version: 0.8.5 (Preservica 6.2 Compatible)
Connected to: us.preservica.com Version: 6.2.0 as test@test.com
>>> asset = client.asset("dc949259-2c1d-4658-8eee-c17b27a8823d")
>>> asset.title
'LC-USZ62-20901'
>>> asset.parent
'ae108c8f-b058-4228-b099-6049175d2f0c'
>>> asset.security_tag
'open'
>>> asset.entity_type
<EntityType.ASSET: 'IO'>

Authentication

pyPreservica provides 4 different methods for authentication. The library requires the username and password of a
Preservica user and a Tenant identifier along with the server hostname.

1 Method Arguments

Include the user credentials as arguments to the EntityAPI Class

>>> from pyPreservica import *
>>> client = EntityAPI(username="test@test.com", password="123444",
 tenant="PREVIEW", server="preview.preservica.com")

If you don’t want to include your Preservica credentials within your python script then the following two methods should
be used.

2 Environment Variable

Export the credentials as environment variables as part of the session

$ export PRESERVICA_USERNAME="test@test.com"
$ export PRESERVICA_PASSWORD="123444"
$ export PRESERVICA_TENANT="PREVIEW"
$ export PRESERVICA_SERVER="preview.preservica.com"

$ python3

>>> from pyPreservica import *
>>> client = EntityAPI()

3 Properties File

Create a properties file called “credentials.properties” and save to the working directory

[credentials]
username=test@test.com
password=123444
tenant=PREVIEW
server=preview.preservica.com

>>> from pyPreservica import *
>>> client = EntityAPI()

You can create a new credentials.properties file automatically using the save_config() method

>>> from pyPreservica import *
>>> client = EntityAPI(username="test@test.com", password="123444",
 tenant="PREVIEW", server="preview.preservica.com")
>>> client.save_config()

4 Shared Secrets

pyPreservica now supports authentication using shared secrets rather than a login account username and password.
This allows a trusted external applications such as pyPreservica to acquire a Preservica API authentication token
without having to use a set of login credentials.

To use the shared secret authentication you need to add a secure secret key to your Preservica system.

The username, password, tenant and server attributes are used as normal, the password field now holds the shared
secret and not the users password.

>>> from pyPreservica import *
>>> client = EntityAPI(username="test@test.com", password="shared-secret", tenant="PREVIEW",
 server="preview.preservica.com", use_shared_secret=True)

>>> from pyPreservica import *
>>> client = EntityAPI(use_shared_secret=True)

SSL Certificates

pyPreservica will only connect to servers which use the https:// protocol and will always validate certificates.

pyPreservica uses the Certifi project to provide SSL certificate validation.

Self-signed certificates used by on-premise deployments are not part of the Certifi CA bundle and need to be set
explicitly.

For on-premise deployments the trusted CAs can be specified through the REQUESTS_CA_BUNDLE environment variable. e.g.

export REQUESTS_CA_BUNDLE=/usr/local/share/ca-certificates/my-server.cert

The User Guide

Entity API

Making a call to the Preservica repository is very simple.

Begin by importing the pyPreservica module

>>> from pyPreservica import *

Now, let’s create the EntityAPI class

>>> client = EntityAPI()

Fetching Entities (Assets, Folders & Content Objects)

Fetch an Asset and print its attributes

>>> asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
>>> print(asset.reference)
>>> print(asset.title)
>>> print(asset.description)
>>> print(asset.security_tag)
>>> print(asset.parent)
>>> print(asset.entity_type)

We can also fetch the same attributes for both Folders

>>> folder = client.folder("0b0f0303-6053-4d4e-a638-4f6b81768264")
>>> print(folder.reference)
>>> print(folder.title)
>>> print(folder.description)
>>> print(folder.security_tag)
>>> print(folder.parent)
>>> print(folder.entity_type)

and Content Objects

>>> content_object = client.content_object("1a2a2101-6053-4d4e-a638-4f6b81768264")
>>> print(content_object.reference)
>>> print(content_object.title)
>>> print(content_object.description)
>>> print(content_object.security_tag)
>>> print(content_object.parent)
>>> print(content_object.entity_type)

We can fetch any of Assets, Folders and Content Objects using the entity type and the unique reference

>>> asset = client.entity(EntityType.ASSET, "9bad5acf-e7a1-458a-927d-2d1e7f15974d")
>>> folder = client.entity(EntityType.FOLDER, asset.parent)

To get a list of parent Folders of an Asset all the way to the root of the repository

>>> folder = client.folder(asset.parent)
>>> print(folder.title)
>>> while folder.parent is not None:
>>> folder = client.folder(folder.parent)
>>> print(folder.title)

Fetching Children of Entities

The immediate children of a Folder can also be retrieved using the library.

To get a set of all the root Folders use

>>> root_folders = client.children(None)

or

>>> root_folders = client.children()

To get a set of children of a particular Folder use

>>> entities = client.children(folder.reference)

To get the siblings of an Asset you can use

>>> entities = client.children(asset.parent)

The set of entities returned may contain both Assets and other Folders.
The default size of the result set is 50 items. The size can be configured and for large result sets
paging is available.

>>> next_page = None
>>> while True:
>>> root_folders = client.children(None, maximum=10, next_page=next_page)
>>> for e in root_folders.results:
>>> print(f'{e.title} : {e.reference} : {e.entity_type}')
>>> if not root_folders.has_more:
>>> break
>>> else:
>>> next_page = root_folders.next_page

A version of this method is also available as a generator function which does not require explicit paging.
This version returns a lazy iterator which does the paging internally.
It will default to 50 items between server requests

>>> for entity in client.descendants():
>>> print(entity.title)
>>>

You can pass a parent reference to get the children of any folder in the same way as the explict paging version

>>> for entity in client.descendants(folder.parent):
>>> print(entity.title)

This is the preferred way to get children of folders as the paging is managed automatically.

If you only need the folders or Assets from a parent you can filter the results using a pre-defined filter

>>> for asset in filter(only_assets, client.descendants(asset.parent)):
>>> print(asset.title)

or

>>> for folders in filter(only_folders, client.descendants(asset.parent)):
>>> print(folders.title)

Note

Entities within the returned set only contain the attributes (type, reference and title).
If you need the full object you have to request it.

If you want all the entities below a point in the hierarchy, i.e a recursive list of all folders and Assets the you can
call all_descendants() this is a generator function which returns a lazy iterator which will make
repeated calls to the server for each page of results.

The following will return all entities within the repository from the root folders down

>>> for e in client.all_descendants():
>>> print(e.title)

again if you need a list of every Asset in the system you can filter using

>>> for asset in filter(only_assets, client.all_descendants()):
>>> print(asset.title)

Creating new Folders

Folder objects can be created directly in the repository, the create_folder() function takes 3
mandatory parameters, folder title, description and security tag.

>>> new_folder = client.create_folder("title", "description", "open")
>>> print(new_folder.reference)

This will create a folder at the top level of the repository. You can create child folders by passing the reference of the parent as the
last argument.

>>> new_folder = client.create_folder("title", "description", "open", folder.reference)
>>> print(new_folder.reference)
>>> assert new_folder.parent == folder.reference

Updating Entities

We can update either the title or description attribute for assets, folders and content objects using the save() method

>>> asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
>>> asset.title = "New Asset Title"
>>> asset.description = "New Asset Description"
>>> asset = client.save(asset)

>>> folder = client.folder("0b0f0303-6053-4d4e-a638-4f6b81768264")
>>> folder.title = "New Folder Title"
>>> folder.description = "New Folder Description"
>>> folder = client.save(folder)

>>> content_object = client.content_object("1a2a2101-6053-4d4e-a638-4f6b81768264")
>>> content_object.title = "New Content Object Title"
>>> content_object.description = "New Content Object Description"
>>> content_object = client.save(content_object)

To change the security tag on an Asset or Folder we have a separate API. Since this may be a long running process.
You can choose either a asynchronous (non-blocking) call which returns immediately or synchronous (blocking call) which
waits for the security tag to be changed before returning.

This is the asynchronous call which returns immediately returning a process id

>>> pid = client.security_tag_async(entity, new_tag)

You can determine the current status of the asynchronous call by passing the argument to get_async_progress

>>> status = client.get_async_progress(pid)

The synchronous version will block until the security tag has been updated on the entity.
This call does not recursively change entities within a folder. It only applies to the named entity passed as an argument.

>>> entity = client.security_tag_sync(entity, new_tag)

3rd Party External Identifiers

3rd party or external identifiers are a useful way to provide additional names or identities to objects to
provide an alternate way of accessing them.
For example if you are synchronising metadata between an external metadata catalogue and Preservica adding the catalogue
identifiers to the Preservica objects allows the catalogue to query Preservica using its own ids.

Each Preservica entity can hold as many external identifiers as you need.

Note

Adding, Updating and Deleting external identifiers is only available in version 6.1 and above

We can add external identifiers to either Assets, Folders or Content Objects. External identifiers have a name or type
and a value. External identifiers do not have to be unique in the same way as internal identifiers.
The same external identifiers can be added to multiple entities to form sets of objects.

>>> asset = client.asset("9bad5acf-e7ce-458a-927d-2d1e7f15974d")
>>> client.add_identifier(asset, "ISBN", "978-3-16-148410-0")
>>> client.add_identifier(asset, "DOI", "https://doi.org/10.1109/5.771073")
>>> client.add_identifier(asset, "URN", "urn:isan:0000-0000-2CEA-0000-1-0000-0000-Y")

Fetch external identifiers on an entity. This call returns a set of tuples (identifier_type, identifier_value)

>>> identifiers = client.identifiers_for_entity(folder)
>>> for identifier in identifiers:
>>> identifier_type = identifier[0]
>>> identifier_value = identifier[1]

You can search the repository for entities with matching external identifiers. The call returns a set of objects
which may include any type of entity.

>>> for e in client.identifier("ISBN", "978-3-16-148410-0"):
>>> print(e.entity_type, e.reference, e.title)

Note

Entities within the set only contain the attributes (type, reference and title). If you need the full object you have to request it.

For example

>>> for e in client.identifier("DOI", "urn:nbn:de:1111-20091210269"):
>>> o = client.entity(e.entity_type, e.reference)
>>> print(o.title)
>>> print(o.description)

To delete identifiers attached to an entity

>>> client.delete_identifiers(entity)

Will delete all identifiers on the entity

>>> client.delete_identifiers(entity, identifier_type="ISBN")

Will delete all identifiers which have type “ISBN”

>>> client.delete_identifiers(entity, identifier_type="ISBN", identifier_value="978-3-16-148410-0")

Will only delete identifiers which match the type and value

Descriptive Metadata

You can query an entity to determine if it has any attached descriptive metadata using the metadata attribute.
This returns a dictionary object the dictionary key is a url which can be used to the fetch metadata
and the value is the schema name:

>>> for url, schema in entity.metadata.items():
>>> print(url, schema)

The descriptive XML metadata document can be returned as a string by passing the key of the map (url)
to the metadata() method

>>> for url in entity.metadata:
>>> xml_document = client.metadata(url)

An alternative is to call the metadata_for_entity directly

>>> xml_document = client.metadata_for_entity(entity, "https://www.person.com/person")

this will fetch the first metadata document which matches the schema argument on the entity

Metadata can be attached to entities either by passing an XML document as a string:

>>> folder = entity.folder("723f6f27-c894-4ce0-8e58-4c15a526330e")

>>> xml = "<person:Person xmlns:person='https://www.person.com/person'>" \
 "<person:Name>Bob Smith</person:Name>" \
 "<person:Phone>01234 100 100</person:Phone>" \
 "<person:Email>test@test.com</person:Email>" \
 "<person:Address>Abingdon, UK</person:Address>" \
 "</person:Person>"

>>> folder = client.add_metadata(folder, "https://www.person.com/person", xml)

or by reading the metadata from a file

>>> with open("DublinCore.xml", 'r', encoding="UTF-8") as md:
>>> asset = client.add_metadata(asset, "http://purl.org/dc/elements/1.1/", md)

Descriptive metadata can also be updated to amend values or change the document structure
To update an existing metadata document call

>>> client.update_metadata(entity, schema, xml_string)

For example the following python fragment appends a new element to an existing document.

>>> folder = client.folder("723f6f27-c894-4ce0-8e58-4c15a526330e") # call into the API
>>>
>>> for url, schema in folder.metadata.items():
>>> if schema == "https://www.person.com/person":
>>> xml_string = client.metadata(url) # call into the API
>>> xml_document = ElementTree.fromstring(xml_string)
>>> postcode = ElementTree.Element('{https://www.person.com/person}Postcode')
>>> postcode.text = "OX14 3YS"
>>> xml_document.append(postcode)
>>> xml_string = ElementTree.tostring(xml_document, encoding='UTF-8').decode("utf-8")
>>> entity.update_metadata(folder, schema, xml_string) # call into the API

Representations, Content Objects & Generations

Each asset in Preservica contains one or more representations, such as Preservation or Access etc.

To get a list of all the representations of an Asset

>>> for representation in client.representations(asset):
>>> print(representation.rep_type)
>>> print(representation.name)
>>> print(representation.asset.title)

Each Representation will contain one or more Content Objects.
Simple Assets contain a single Content Object whereas more complex objects such as 3D models, books, multi-page documents
may have several content objects.

>>> for content_object in client.content_objects(representation):
>>> print(content_object.reference)
>>> print(content_object.title)
>>> print(content_object.description)
>>> print(content_object.parent)
>>> print(content_object.metadata)
>>> print(content_object.asset.title)

Each content object will contain a least one Generation, migrated content may have multiple Generations.

>>> for generation in client.generations(content_object):
>>> print(generation.original)
>>> print(generation.active)
>>> print(generation.content_object)
>>> print(generation.format_group)
>>> print(generation.effective_date)
>>> print(generation.bitstreams)

Each Generation has a list of BitStream ids which can be used to fetch the actual content from the server or
fetch technical metadata about the bitstream itself:

>>> for bitstream in generation.bitstreams:
>>> print(bitstream.filename)
>>> print(bitstream.length)
>>> for algorithm,value in bitstream.fixity.items():
>>> print(algorithm, value)

The actual content files can be download using bitstream_content()

>>> client.bitstream_content(bitstream, bitstream.filename)

Integrity Check History

You can request the history of all integrity checks which have been carried out on a bitstream

>>> for bitstream in generation.bitstreams:
>>> for check in client.integrity_checks(bitstream):
>>> print(check)

The list of returned checks includes both full and quick integrity checks.

Note

This call does not start a new check, it only returns information about previous checks.

Moving Entities

We can move entities between folders using the move call

>>> client.move(entity, dest_folder)

Where entity is the object to move either an Asset or Folder and the second argument is
destination folder where the entity is moved to.

Folders can be moved to the root of the repository by passing None as the second argument.

>>> entity = client.move(folder, None)

The move() call is an alias for move_sync() which is a synchronous (blocking call):

>>> entity = client.move_sync(entity, dest_folder)

An asynchronous (non-blocking) version is also available which returns a progress id.

>>> pid = client.move_async(entity, dest_folder)

You can determine the completed status of the asynchronous move call by passing the
argument to get_async_progress

>>> status = client.get_async_progress(pid)

Deleting Entities

You can initiate and approve a deletion request using the API.

Note

Deletion is a two stage process within Preservica and requires two distinct sets of credentials.
To use the delete functions you must be using the “credentials.properties” authentication method.

Note

The Deletion API is only available when connected to Preservica version 6.2 or above

Add manager.username and manager.password to the credentials file.

[credentials]
username=
password=
server=
tenant=
manager.username=
manager.password=

Deleting an asset

>>> asset_ref = client.delete_asset(asset, "operator comments", "supervisor comments")
>>> print(asset_ref)

Deleting a folder

>>> folder_ref = client.delete_folder(folder, "operator comments", "supervisor comments")
>>> print(folder_ref)

Warning

This API call deletes entities within the repository, it both initiates and approves the deletion request
and therefore must be used with care.

Finding Updated Entities

We can query Preservica for entities which have changed over the last n days using

>>> for e in client.updated_entities(previous_days=30):
>>> print(e)

The argument is the number of previous days to check for changes. This call does paging internally.

The pyPreservica library also provides a web service call which is part of the content API which allows downloading of digital
content directly without having to request the Representations and Generations first.
This call is a short-cut to request the Bitstream from the latest Generation of the first Content Object in the Access
Representation of an Asset. If the asset does not have an Access Representation then the
Preservation Representation is used.

For very simple assets which comprise a single digital file in a single Representation
then this call will probably do what you expect.

>>> asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> filename = client.download(asset, "asset.jpg")

For complex multi-part assets which have been through preservation actions it may be better to use the data model
and the bitstream_content() function to fetch the exact bitstream you need.

Add or remove asset and folder icons

You can now add and remove icons on assets and folders using the API. The icons will be displayed in the Explorer and
Universal Access interfaces.

>>> folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>>> client.add_thumbnail(folder, "../my-icon.png")

>>> client.remove_thumbnail(folder)

and for assets

>>> asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> client.add_thumbnail(asset, "../my-icon.png")

>>> client.remove_thumbnail(asset)

We also have a function to fetch the thumbnail image for an asset or folder

>>> asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> filename = client.thumbnail(asset, "thumbnail.jpg")

You can specify the size of the thumbnail by passing a second argument

>>> asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> filename = client.thumbnail(asset, "thumbnail.jpg", Thumbnail.LARGE) ## 400×400 pixels
>>> filename = client.thumbnail(asset, "thumbnail.jpg", Thumbnail.MEDIUM) ## 150×150 pixels
>>> filename = client.thumbnail(asset, "thumbnail.jpg", Thumbnail.SMALL) ## 64×64 pixels

Replacing Content Objects

Preservica now supports replacing individual Content Objects within an Asset. The use case here is you have uploaded
a large digitised object such as book and you subsequently discover that a page has been digitised incorrectly.
You would like to replace a single page (Content Object) without having to delete and re-ingest the complete Asset.

The non-blocking (asynchronous) API call will replace the last active Generation of the Content Object

>>> content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
>>> file = "C:/book/page421.tiff"
>>> pid = client.replace_generation_async(content_object, file)

This will return a process id which can be used to monitor the replacement workflow using

>>> status = client.get_async_progress(pid)

By default the API will generate a new fixity value on the client using the same fixity algorithm as the original Generation you are replacing.
If you want to use a different fixity algorithm or you want to use a pre-calculated or existing fixity value you can specify the
algorithm and value.

>>> content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
>>> file = "C:/book/page421.tiff"
>>> pid = client.replace_generation_async(content_object, file, fixity_algorithm='SHA1', fixity_value='2fd4e1c67a2d28fced849ee1bb76e7391b93eb12')

There is also an synchronous or blocking version which will wait for the replace workflow to complete before returning
back to the caller.

>>> content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
>>> file = "C:/book/page421.tiff"
>>> workflow_status = client.replace_generation_sync(content_object, file)

Export OPEX Package

pyPreservica allows clients to request a full package export from the system by folder or asset,
this will start an export workflow and download the resulting dissemination package when the export workflow has completed.

The resulting package will be a zipped OPEX formatted package containing the digital content and metadata.
The export_opex API is a blocking call which will wait for the export workflow to complete before downloading the package.

>>> folder = client.folder('0f2997f7-728c-4e55-9f92-381ed1260d70')
>>> opex_zip = client.export_opex(folder)

The output is the name of the downloaded zip file in the current working directory.

By default the OPEX package includes metadata, digital content with the latest active generations
and the parent hierarchy.

The API can be called on either a folder or a single asset.

>>> asset = client.asset('1f2129f7-728c-4e55-9f92-381ed1260d70')
>>> opex_zip = client.export_opex(asset)

The call also takes the following optional arguments

	IncludeContent “Content” or “NoContent”

	IncludeMetadata “Metadata” or “NoMetadata” or “MetadataWithEvents”

	IncludedGenerations “LatestActive” or “AllActive” or “All”

	IncludeParentHierarchy “true” or “false”

e.g.

>>> folder = client.folder('0f2997f7-728c-4e55-9f92-381ed1260d70')
>>> opex_zip = client.export_opex(folder, IncludeContent="Content", IncludeMetadata="MetadataWithEvents")

Content API

pyPreservica now contains some experimental interfaces to the content API

https://us.preservica.com/api/content/documentation.html

The content API is a readonly interface which returns json documents rather than XML and which has some duplication
with the entity API, but it does contain search capabilities.

The content API client is created using

>>> from pyPreservica import *
>>> client = ContentAPI()

object-details

Get the details for a Asset or Folder as a raw json document:

>>> client = ContentAPI()
>>> client.object_details("IO", "uuid")
>>> client.object_details("SO", "uuid")

indexed-fields

Get a list of all the indexed metadata fields within the solr server. This includes the default
xip.* fields and any custom indexes which have been created through custom index files.

>>> client = ContentAPI()
>>> client.indexed_fields():

Search

Search the repository using a single expression which matches on any indexed field.

>>> client = ContentAPI()
>>> client.simple_search_csv()

Searches for everything and writes the results to a csv file called “search.csv”, by default the csv
columns contain reference, title, description, document_type, parent_ref, security_tag.

You can pass the query term as the first argument (% is the wildcard character) and
the csv file name as the second argument.

>>> client = ContentAPI()
>>> client.simple_search_csv("%", "results.csv")

>>> client = ContentAPI()
>>> client.simple_search_csv("Oxford", "oxford.csv")

>>> client = ContentAPI()
>>> client.simple_search_csv("History of Oxford", "history.csv")

The last argument is an optional list of indexed fields which are the csv file columns.

>>> client = ContentAPI()
>>> metadata_fields = ["xip.reference", "xip.title", "xip.description", "xip.document_type", "xip.parent_ref", "xip.security_descriptor"]
>>> client.simple_search_csv("%", "results.csv", metadata_fields)

or to include everything except the full text index value

>>> client = ContentAPI()
>>> everything = list(filter(lambda x: x != "xip.full_text", client.indexed_fields()))
>>> client.simple_search_csv("%", "results.csv", everything)

Upload API

PyPreservica provides some limited capabilities for the Upload Content API

https://developers.preservica.com/api-reference/3-upload-content-s3-compatible

The Upload API can be used for creating, uploading and automatically starting an ingest workflows with pre-created packages.
The Package can be either a native v5 SIP as created from a tool such as the SIP Creator or a native v6 SIP created
manually.
Zipped OPEX packages are also supported. https://developers.preservica.com/documentation/open-preservation-exchange-opex

The package can also be a regular zip file containing just folders and files with or without simple .metadata files.

Uploading Packages

The upload API client is created using

>>> from pyPreservica import *
>>> upload = UploadAPI()

Once you have a client you can use it to upload packages.:

>>> upload.upload_zip_package("my-package.zip")

Will upload the local zip file and start an ingest workflow if one is enabled.

The zip file can be any of the following:

	Zipped Native XIPv5 Package (i.e. created from the SIP Creator)

	Zipped Native XIPv6 Package (see below)

	Zipped OPEX Package

	Zipped Folder

Note

A Workflow Context must be active for the package upload requests to be successful.

If the package is a simple zipped folder without a manifest XML then you will want to pass information to the
ingest to specify which folder the content should be ingested into.
To specify the parent folder of the ingest pass a folder object as the second argument.

>>> upload = UploadAPI()
>>> client = EntityAPI()
>>> folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> upload.upload_zip_package(path_to_zip_package="my-package.zip", folder=folder)

Monitoring Upload Progress

The upload_zip_package function accepts an optional Callback parameter.
The parameter references a class that pyPreservica invokes intermittently during the transfer operation.

pyPreservica executes the class’s __call__ method. For each invocation, the class is passed the
number of bytes transferred up to that point. This information can be used to implement a progress monitor.

The following Callback setting instructs pyPreservica to create an instance of the UploadProgressCallback class.
During the upload, the instance’s __call__ method will be invoked intermittently.:

>>> from pyPreservica import UploadProgressCallback
>>> my_callback=UploadProgressCallback("my-package.zip")
>>> client.upload_zip_package(path_to_zip_package="my-package.zip", folder=folder, callback=my_callback)

The default pyPreservica UploadProgressCallback looks like

import os
import sys
import threading

class ProgressPercentage(object):
 def __init__(self, filename):
 self._filename = filename
 self._size = float(os.path.getsize(filename))
 self._seen_so_far = 0
 self._lock = threading.Lock()

 def __call__(self, bytes_amount):
 with self._lock:
 self._seen_so_far += bytes_amount
 percentage = (self._seen_so_far / self._size) * 100
 sys.stdout.write("\r%s %s / %s (%.2f%%)" % (self._filename, self._seen_so_far, self._size, percentage))
 sys.stdout.flush()

Creating Packages

The UploadAPI module also contains functions for creating XIPv6 packages directly from content files.

To create a package containing a single preservation Content Object (file) as part of an Asset which will
be a child of specified folder

>>> package_path = simple_asset_package(preservation_file="my-image.tiff", parent_folder=folder)

The output is a path to the zip file which can be passed directly to the upload_zip_package method:

>>> client.upload_zip_package(path_to_zip_package=package_path)

By default the Asset title and description will be taken from the file name.

If you don’t specify an export folder the new package will be created in the system TEMP folder.
If you want to override this behaviour and explicitly specify the output folder for the package
use the export_folder argument

>>> package_path = simple_asset_package(preservation_file="my-image.tiff", parent_folder=folder,
 export_folder="/mnt/export/packages")

You can specify the Asset title and description using additional keyword arguments.

>>> package_path = simple_asset_package(preservation_file="my-image.tiff", parent_folder=folder,
 Title="Asset Title", Description="Asset Description")

You can also add a second Access content object to the asset. This will create an asset
with two representations (Preservation & Access)

>>> package_path = simple_asset_package(preservation_file="my-image.tiff", access_file="my-image.jpg"
 parent_folder=folder)

It is possible to configure the asset within the package using the following additional keyword arguments.

	Title Asset Title

	Description Asset Description

	SecurityTag Asset Security Tag

	CustomType Asset Type

	Preservation_Content_Title Content Object Title of the Preservation Object

	Preservation_Content_Description Content Object Description of the Preservation Object

	Access_Content_Title Content Object Title of the Access Object

	Access_Content_Description Content Object Description of the Access Object

	Preservation_Generation_Label Generation Label for the Preservation Object

	Access_Generation_Label Generation Label for the Access Object

	Asset_Metadata Dictionary of metadata schema/documents to add to the Asset

	Identifiers Dictionary of Asset identifiers

	Preservation_files_fixity_callback Fixity generation callback for preservation files

	Access_files_fixity_callback Fixity generation callback for access files

The package will contain an asset with the following structure.

[image: _images/simple_asset_package.png]
For example to add descriptive metadata and two 3rd party identifiers use the following

>>> metadata = {"http://purl.org/dc/elements/1.1/": "dublin_core.xml"}
>>> identifiers = {"DOI": "doi:10.1038/nphys1170", "ISBN": "978-3-16-148410-0"}
>>> package_path = simple_asset_package(preservation_file="my-image.tiff", access_file="my-image.jpg"
 parent_folder=folder, Asset_Metadata=metadata, Identifiers=identifiers)

More complex assets can also be defined which contain multiple Content Objects,
for example a book with multiple pages etc.

The complex_asset_package function takes a collection of preservation files and an optional collection of access files.
It creates a single asset package with multiple content objects per Representation.

Use a list collection to preserve the ordering of the content objects within the asset. For example the first
page of a book should be the first item added to the list.

>>> preservation_files = list()
>>> preservation_files.append("page-1.tiff")
>>> preservation_files.append("page-2.tiff")
>>> preservation_files.append("page-3.tiff")

>>> access_files = list()
>>> access_files.append("book.pdf")

>>> package_path = complex_asset_package(preservation_files_list=preservation_files, access_files_list=access_files,
 parent_folder=folder)

Custom Fixity Generation

By default the simple_asset_package and complex_asset_package routines will create packages which contain
SHA1 [https://en.wikipedia.org/wiki/SHA-1] fixity values.

You can override this default behaviour through the use of the callback options. The pyPreservica library provides
default callbacks for SHA-1, SHA256 & SHA512

	Sha1FixityCallBack

	Sha256FixityCallBack

	Sha512FixityCallBack

To use one of the default callbacks:

>>> package_path = complex_asset_package(preservation_files_list=preservation_files, access_files_list=access_files,
 parent_folder=folder, Preservation_files_fixity_callback=Sha512FixityCallBack())

If you want to re-use existing externally generated fixity values for performance or integrity reasons then you can create a custom callback.
The callback takes the filename and the path of the file and should return a tuple containing the algorithm name
and fixity value

>>> class MyFixityCallback:
>>> def __call__(self, filename, full_path):
>>> ...
>>> ...
>>> return "SHA1", value

Spreadsheet Metadata

pyPreservica now provides some experimental support for working with metadata in spreadsheets.
The library provides support for generating descriptive metadata XML documents for each row in a spreadsheet, creating
an XSD schema for the XML documents and creating a custom transform for viewing the metadata in the UA portal along side
a custom search index.

Before working with the spreadsheet it should be saved as a UTF-8 CSV document within Excel.

[image: _images/excel.png]
CSV to XML works by extracting each row of a spreadsheet and creating a single XML document for each row.
The spreadsheet columns are the XML attributes.

The XML namespace and root element need to be provided. You also need to specify which column should be used to name the
XML files.

>>> cvs_to_xml(csv_file="my-spreadsheet.csv", root_element="Metadata", file_name_column="filename", xml_namespace="https://test.com/Metadata")

This will read the my-spreadsheet.csv csv file and create a set of XML documents, one for each row in the csv file.
The XML files will be named after the value in the filename column.

The resulting XML documents will look like

<?xml version='1.0' encoding='utf-8'?>
<Metadata xmlns="https://test.com/Metadata">
 <Column1>....</Column1>
 <Column2>....</Column2>
 <Column3>....</Column3>
 <Column4>....</Column4>
</Metadata>

You can create a XSD schema for the documents by calling

>>> cvs_to_xsd(csv_file="my-spreadsheet.csv", root_element="Metadata", xml_namespace="https://test.com/Metadata")

Which will generate a document Metadata.xsd

<?xml version='1.0' encoding='utf-8'?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="https://test.com/Metadata">
 <xs:element name="Metadata">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="Column1" />
 <xs:element type="xs:string" name="Column2" />
 <xs:element type="xs:string" name="Column3" />
 <xs:element type="xs:string" name="Column4" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

To display the resulting metadata in the UA portal you will need a CMIS transform to tell Preservica which attributes to
display. You can generate one by calling

>>> cvs_to_cmis_xslt(csv_file="my-spreadsheet.csv", root_element="Metadata", title="My Metadata Title",
 xml_namespace="https://test.com/Metadata")

You can also auto-generate a custom search index document which will add indexes for each column in the spreadsheet

>>> csv_to_search_xml(csv_file="my-spreadsheet.csv", root_element="Metadata",
 xml_namespace="https://test.com/Metadata")

Ingest Web Video

pyPreservica now contains the ability to ingest web video directly from video hosting sites such as YouTube and others.
To use this functionality you need to install the additional Python Project youtube_dl

$ pip install --upgrade youtube_dl

You can ingest video’s directly with only the video site URL

>>> upload = UploadAPI()
>>> client = EntityAPI()
>>> url = "https://www.youtube.com/watch?v=4GCr9gljY7s"
>>> folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> upload.ingest_web_video(url=url, parent_folder=folder):

It will work with most sites that host video, for example using c-span:

>>> upload = UploadAPI()
>>> client = EntityAPI()
>>> url = "https://www.c-span.org/video/?508691-1/ceremonial-swearing-democratic-senator-padilla"
>>> folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> upload.ingest_web_video(url=url, parent_folder=folder):

or UK parliament

>>> upload = UploadAPI()
>>> client = EntityAPI()
>>> url = "https://parliamentlive.tv/event/index/b886f44b-0e65-47bc-b506-d0e805c01f4b"
>>> folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> upload.ingest_web_video(url=url, parent_folder=folder):

The asset will automatically have a title and description pulled from the original site.
You can override the default title, description and security tag with optional arguments and add 3rd party
identifiers.

>>> upload = UploadAPI()
>>> client = EntityAPI()
>>> identifier_map = {"Type": "youtube.com"}
>>> url = "https://www.youtube.com/watch?v=4GCr9gljY7s"
>>> title = "Preservica Cloud Edition: Keeping your digital assets safe and accessible"
>>> folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
>>> upload.ingest_web_video(url=url, parent_folder=folder, Identifiers=identifier_map, Title=title, SecurityTag="public")

Entity API Developer Interface

This part of the documentation covers all the interfaces of pyPreservica EntityAPI object.

	
class pyPreservica.EntityAPI

	

	
asset(reference)

	Returns an asset object back by its internal reference identifier

	Parameters

	reference (str) – The unique identifier for the asset usually its uuid

	Returns

	The asset object

	Return type

	Asset

	Raises

	RuntimeError – if the identifier is incorrect

	
folder(reference)

	Returns a folder object back by its internal reference identifier

	Parameters

	reference (str) – The unique identifier for the asset usually its uuid

	Returns

	The folder object

	Return type

	Folder

	Raises

	RuntimeError – if the identifier is incorrect

	
content_object(reference)

	Returns a content object back by its internal reference identifier

	Parameters

	reference (str) – The unique identifier for the asset usually its uuid

	Returns

	The content object

	Return type

	ContentObject

	Raises

	RuntimeError – if the identifier is incorrect

	
entity(entity_type, reference)

	Returns an generic entity based on its reference identifier

	Parameters

	
	entity_type (entity_type) – The type of entity

	reference (str) – The unique identifier for the enity

	Returns

	The entity

	Return type

	Entity

	Raises

	RuntimeError – if the identifier is incorrect

	
save(entity)

	Updates the title and description of an entity
The security tag and parent are not saved via this method call

	Parameters

	entity (Entity) – The entity (asset, folder, content_object) to be updated

	Returns

	The updated entity

	Return type

	Entity

	
security_tag_async(entity, new_tag)

	Change the security tag of an asset or folder
This is a non blocking call which returns immediately.

	Parameters

	
	entity (Entity) – The entity (asset, folder) to be updated

	new_tag (str) – The new security tag to be set on the entity

	Returns

	A progress ID

	Return type

	str

	
security_tag_sync(entity, new_tag)

	Change the security tag of an asset or folder
This is a blocking call which returns after all entities have been updated.

	Parameters

	
	entity (Entity) – The entity (asset, folder) to be updated

	new_tag (str) – The new security tag to be set on the entity

	Returns

	The updated entity

	Return type

	Entity

	
create_folder(title, description, security_tag, parent=None)

	Create a new folder in the repository

	Parameters

	
	title (str) – The title of the new folder

	description (str) – The description of the new folder

	security_tag (str) – The security tag of the new folder

	parent (str) – The identifier for the parent folder

	Returns

	The new folder object

	Return type

	Folder

	
representations(asset)

	Return a set of representations for the asset

	Parameters

	asset (Asset) – The asset containing the required representations

	Returns

	Set of Representation objects

	Return type

	set(Representation)

	
content_objects(representation)

	Return a list of content objects for a representation

	Parameters

	representation (Representation) – The representation

	Returns

	List of content objects

	Return type

	list(ContentObject)

	
generations(content_object)

	Return a list of Generation objects for a content object

	Parameters

	content_object (ContentObject) – The content object

	Returns

	list of generations

	Return type

	list(Generation)

	
bitstream_content(bitstream, filename)

	Downloads the bitstream object to a local file

	Parameters

	
	bitstream (Bitstream) – The content object

	filename (str) – The name of the file the bytes are written to

	Returns

	the number of bytes written

	Return type

	int

	
identifiers_for_entity(entity)

	Return a set of identifiers which belong to the entity

	Parameters

	entity (Entity) – The entity

	Returns

	Set of identifiers as tuples

	Return type

	set(Tuple)

	
identifier(identifier_type, identifier_value)

	Return a set of entities with external identifiers which match the type and value

	Parameters

	
	identifier_type (str) – The identifier type

	identifier_value (str) – The identifier value

	Returns

	Set of entity objects which have a reference and title attribute

	Return type

	set(Entity)

	
add_identifier(entity, identifier_type, identifier_value)

	Add a new external identifier to an Entity object

	Parameters

	
	entity (Entity) – The entity the identifier is added to

	identifier_type (str) – The identifier type

	identifier_value (str) – The identifier value

	Returns

	An internal id for this external identifier

	Return type

	str

	
delete_identifiers(entity, identifier_type=None, identifier_value=None)

	Delete identifiers on an Entity object

	Parameters

	
	entity (Entity) – The entity the identifiers are deleted from

	identifier_type (str) – The identifier type

	identifier_value (str) – The identifier value

	Returns

	entity

	Return type

	Entity

	
metadata(uri)

	Fetch the metadata document by its identifier, this is the key from the entity metadata map

	Parameters

	uri (str) – The metadata identifier

	Returns

	A XML document as a string

	Return type

	str

	
metadata_for_entity(entity, schema)

	Fetch the first metadata document which matches the schema URI from an entity

	Parameters

	
	entity (Entity) – The entity containing the metadata

	schema (str) – The metadata schema URI

	Returns

	The first XML document on the entity document matching the schema URI

	Return type

	str

	
add_metadata(entity, schema, data)

	Add a new descriptive XML document to an entity

	Parameters

	
	entity (Entity) – The entity to add the metadata to

	schema (str) – The metadata schema URI

	data (data) – The XML document as a string or as a file bytes

	Returns

	The updated Entity

	Return type

	Entity

	
update_metadata(entity, schema, data)

	Update an existing descriptive XML document on an entity

	Parameters

	
	entity (Entity) – The entity to add the metadata to

	schema (str) – The metadata schema URI

	data (data) – The XML document as a string or as a file bytes

	Returns

	The updated Entity

	Return type

	Entity

	
delete_metadata(entity, entity, schema)

	Delete an existing descriptive XML document on an entity by its schema
This call will delete all fragments with the same schema

	Parameters

	
	entity (Entity) – The entity to add the metadata to

	schema (str) – The metadata schema URI

	Returns

	The updated Entity

	Return type

	Entity

	
move_sync(entity, dest_folder)

	

Move an entity (asset or folder) to a new folder
This call blocks until the move is complete

	Parameters

	
	entity (Entity) – The entity to move either asset or folder

	dest_folder (Entity) – The new destination folder. This can be None to move a folder to the root of the repository

	Returns

	The updated entity

	Return type

	Entity

	
move_async(entity, dest_folder)

	

Move an entity (asset or folder) to a new folder
This call returns immediately and does not block

	Parameters

	
	entity (Entity) – The entity to move either asset or folder

	dest_folder (Entity) – The new destination folder. This can be None to move a folder to the root of the repository

	Returns

	Progress ID token

	Return type

	str

	
move(entity, dest_folder)

	Move an entity (asset or folder) to a new folder
This call is an alias for the move_sync (blocking) method.

	Parameters

	
	entity (Entity) – The entity to move either asset or folder

	dest_folder (Entity) – The new destination folder. This can be None to move a folder to the root of the repository

	Returns

	The updated entity

	Return type

	Entity

	
children(folder_reference, maximum=50, next_page=None)

	Return the child entities of a folder one page at a time. The caller is responsible for
requesting the next page of results.

	Parameters

	
	folder_reference (str) – The parent folder reference, None for the children of root folders

	maximum (int) – The maximum size of the result set in each page

	next_page (str) – A URL for the next page of results

	Returns

	A set of entity objects

	Return type

	set(Entity)

	
descendants(folder_reference)

	Return the immediate child entities of a folder using a lazy iterator. The paging is done internally using a default page
size of 50 elements. Callers can iterate over the result to get all children with a single call.

	Parameters

	folder_reference (str) – The parent folder reference, None for the children of root folders

	Returns

	A set of entity objects (Folders and Assets)

	Return type

	set(Entity)

	
all_descendants(folder_reference)

	
Return all child entities recursively of a folder or repository down to the assets using a lazy iterator.
The paging is done internally using a default page
size of 50 elements. Callers can iterate over the result to get all children with a single call.

	param str folder_reference

	The parent folder reference, None for the children of root folders

	return

	A set of entity objects (Folders and Assets)

	rtype

	set(Entity)

	
delete_asset(asset, operator_comment, supervisor_comment)

	Initiate and approve the deletion of an asset.

	Parameters

	
	asset (Asset) – The asset to delete

	operator_comment (str) – The comments from the operator which are added to the logs

	supervisor_comment (str) – The comments from the supervisor which are added to the logs

	Returns

	The asset reference

	Return type

	str

	
delete_folder(asset, operator_comment, supervisor_comment)

	Initiate and approve the deletion of a folder.

	Parameters

	
	asset (Folder) – The folder to delete

	operator_comment (str) – The comments from the operator which are added to the logs

	supervisor_comment (str) – The comments from the supervisor which are added to the logs

	Returns

	The folder reference

	Return type

	str

	
thumbnail(entity, filename, size=Thumbnail.LARGE)

	Get the thumbnail image for an asset or folder

	Parameters

	
	entity (Entity) – The entity

	filename (str) – The file the image is written to

	size (Thumbnail) – The size of the thumbnail image

	Returns

	The filename

	Return type

	str

	
download(entity, filename)

	Download the first generation of the access representation of an asset

	Parameters

	
	entity (Entity) – The entity

	filename (str) – The file the image is written to

	size (Thumbnail) – The size of the thumbnail image

	Returns

	The filename

	Return type

	str

	
updated_entities(previous_days: int = 1)

	Fetch a list of entities which have changed (been updated) over the previous n days.

This method uses a generator function to make repeated calls to the server for every page of results.

	Parameters

	previous_days (int) – The number of days to check for changes.

	Returns

	A list of entities

	Return type

	list

	
class pyPreservica.Generation

	Generations represent changes to content objects over time, as formats become obsolete new
generations may need to be created to make the information accessible.

	
original

	

original generation (True or False)

	
active

	

active generation (True or False)

	
format_group

	

format for this generation

	
effective_date

	

effective date generation

	
bitstreams

	

list of Bitstream objects

	
class pyPreservica.Bitstream

	Bitstreams represent the actual computer files as ingested into Preservica, i.e.
the TIFF photograph or the PDF document

	
filename

	

The filename of the original bitstream

	
length

	

The file size in bytes of the original Bitstream

	
fixity

	

Map of fixity values for this bitstream, the key is the algorithm name and the value is the fixity value

	
class pyPreservica.Representation

	Representations are used to define how the information object are composed in terms of technology and structure.

	
rep_type

	

The type of representation

	
name

	

The name of representation

	
asset

	

The asset the representation belongs to

	
class pyPreservica.Entity

	Entity is the base class for assets, folders and content objects
They all have the following attributes

	
reference

	

The unique internal reference for the entity

	
title

	

The title of the entity

	
description

	

The description of the entity

	
security_tag

	

The security tag of the entity

	
parent

	

The unique internal reference for this entity’s parent object

The parent of an Asset is always a Folder

The parent of a Folder is always a Folder or None for a folder at the root of the repository

The parent of a Content Object is always an Asset

	
metadata

	

A map of descriptive metadata attached to the entity.

The key of the map is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Assets have entity type EntityType.ASSET

Folders have entity type EntityType.FOLDER

Content Objects have entity type EntityType.CONTENT_OBJECT

	
class pyPreservica.Asset

	Asset represents the information object or intellectual unit of information within the repository.

	
reference

	

The unique internal reference for the asset

	
title

	

The title of the asset

	
description

	

The description of the asset

	
security_tag

	

The security tag of the asset

	
parent

	

The unique internal reference for this asset’s parent folder

	
metadata

	

A map of descriptive metadata attached to the asset.

The key of the map is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Assets have entity type EntityType.ASSET

	
class pyPreservica.Folder

	Folder represents the structure of the repository and contains both Assets and Folder objects.

	
reference

	

The unique internal reference for the folder

	
title

	

The title of the folder

	
description

	

The description of the folder

	
security_tag

	

The security tag of the folder

	
parent

	

The unique internal reference for this folder’s parent folder

	
metadata

	

A map of descriptive metadata attached to the folder.

The key of the map is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Assets have entity type EntityType.FOLDER

	
class pyPreservica.ContentObject

	ContentObject represents the internal structure of an asset.

	
reference

	

The unique internal reference for the content object

	
title

	

The title of the content object

	
description

	

The description of the content object

	
security_tag

	

The security tag of the content object

	
parent

	

The unique internal reference for this content object parent asset

	
metadata

	

A map of descriptive metadata attached to the content object.

The key of the map is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Content objects have entity type EntityType.CONTENT_OBJECT

Content API Developer Interface

Upload API Developer Interface

This part of the documentation covers all the interfaces of pyPreservica UploadAPI object.

	
class pyPreservica.UploadAPI

	
	
upload_zip_package(path_to_zip_package, folder, callback, delete_after_upload)

	Uploads a zip file package and starts an ingest workflow

	Parameters

	
	path_to_zip_package (str) – Path to the package

	folder (Folder) – The folder to ingest the package into

	callback (str) – Optional callback to allow the callee to monitor the upload progress

	delete_after_upload (bool) – Delete the package after the upload has completed

	Raises

	RuntimeError –

Example Applications

Updating a descriptive metadata element value

If you need to bulk update metadata values the following script will check every asset in a folder given by the “folder-uuid”
and find the matching descriptive metadata document by its namespace “your-xml-namespace”.
It will then find a particular element in the xml document “your-element-name” and update its value.

from xml.etree import ElementTree
from pyPreservica import *
client = EntityAPI()
folder = client.folder("folder-uuid")
next_page = None
while True:
 children = client.children(folder.reference, maximum=10, next_page=next_page)
 for entity in children.results:
 if entity.entity_type is EntityAPI.EntityType.ASSET:
 asset = client.asset(entity.reference)
 for url, schema in asset.metadata.items():
 if schema == "your-xml-namespace":
 xml_document = ElementTree.fromstring(client.metadata(url))
 field_with_error = xml_document.find('.//{your-xml-namespace}your-element-name')
 if hasattr(field_with_error, 'text'):
 if field_with_error.text == "Old Value":
 field_with_error.text = "New Value"
 asset = client.update_metadata(asset, schema, ElementTree.tostring(xml_document, encoding='UTF-8', xml_declaration=True).decode("utf-8"))
 print("Updated asset: " + asset.title)
 if not children.has_more:
 break
 else:
 next_page = children.next_page

The following script does the same thing as above but uses the function descendants() rather than children().
The difference is that descendants() does the paging of results internally and combined with
a filter() on the lazy iterator provides a version which does not need the additional while loop or if statement!

client = EntityAPI()
folder = client.folder("folder-uuid")
for child_asset in filter(only_assets, client.descendants(folder.reference)):
 asset = client.asset(child_asset.reference)
 document = ElementTree.fromstring(client.metadata_for_entity(asset, "your-xml-namespace"))
 field_with_error = document.find('.//{your-xml-namespace}your-element-name')
 if hasattr(field_with_error, 'text'):
 if field_with_error.text == "Old Value":
 field_with_error.text = "New Value"
 new_xml = ElementTree.tostring(document, encoding='UTF-8', xml_declaration=True).decode("utf-8")
 asset = client.update_metadata(asset, "your-xml-namespace", new_xml)
 print("Updated asset: " + asset.title)

Adding Metadata from a Spreadsheet

One common use case which can be solved with pyPreservica is adding descriptive metadata to existing Preservica assets or folders
using metadata held in a spreadsheet. Normally each column in the spreadsheet contains a metadata attribute and each row represents a
different asset.

The following is a short python script which uses pyPreservica to update assets within Preservica
with Dublin Core Metadata held in a spreadsheet.

The spreadsheet should contain a header row. The column name in the header row
should start with the text “dc:” to be included.
There should be one column called “assetId” which contains the reference id for the asset to be updated.

The metadata should be saved as a UTF-8 CSV file called dublincore.csv

import xml
import csv
from pyPreservica import *

OAI_DC = "http://www.openarchives.org/OAI/2.0/oai_dc/"
DC = "http://purl.org/dc/elements/1.1/"
XSI = "http://www.w3.org/2001/XMLSchema-instance"

entity = EntityAPI()

headers = list()
with open('dublincore.csv', encoding='utf-8-sig', newline='') as csvfile:
 reader = csv.reader(csvfile)
 for row in reader:
 for header in row:
 headers.append(header)
 break
 if 'assetId' in headers:
 for row in reader:
 assetID = None
 xml_object = xml.etree.ElementTree.Element('oai_dc:dc', {"xmlns:oai_dc": OAI_DC, "xmlns:dc": DC, "xmlns:xsi": XSI})
 for value, header in zip(row, headers):
 if header.startswith('dc:'):
 xml.etree.ElementTree.SubElement(xml_object, header).text = value
 elif header.startswith('assetId'):
 assetID = value
 xml_request = xml.etree.ElementTree.tostring(xml_object, encoding='utf-8', xml_declaration=True).decode('utf-8')
 asset = entity.asset(assetID)
 entity.add_metadata(asset, OAI_DC, xml_request)
 else:
 print("The CSV file should contain a assetId column containing the Preservica identifier for the asset to be updated")

Creating Searchable Transcripts from Oral Histories

The following is an example python script which uses a 3rd party Machine Learning API to automatically generate a text
transcript from an audio file such as a WAVE file.
The transcript is then uploaded to Preservica, is stored as metadata attached to an asset and indexed so that the audio or oral history is searchable.

This example uses the AWS https://aws.amazon.com/transcribe/ service, but other AI APIs are also available.
AWS provides a free tier https://aws.amazon.com/free/ to allow you to try the service for no cost.

This python script does require a set of AWS credentials to use the AWS transcribe service.

The python script downloads a WAV file using its reference, uploads it to AWS S3 and then starts the transcription service,
when the transcript is available it creates a metadata document containing the text and uploads it to Preservica.:

import os,time,uuid,xml,boto3,requests
from pyPreservica import *

BUCKET = "com.my.transcribe.bucket"
AWS_KEY = '.....'
AWS_SECRET = '........'
REGION = 'eu-west-1'
download the file to the local machine
client = EntityAPI()
asset = client.asset('91c73c95-a298-448c-a5a3-2295e5052be3')
client.download(asset, f"{asset.reference}.wav")
upload the file to AWS
s3_client = boto3.client('s3', region_name=REGION, aws_access_key_id=AWS_KEY, aws_secret_access_key=AWS_SECRET)
response = s3_client.upload_file(f"{asset.reference}.wav", BUCKET, f"{asset.reference}")
Start the transcription service
transcribe = boto3.client('transcribe', region_name=REGION, aws_access_key_id=KEY, aws_secret_access_key=SECRET)
job_name = str(uuid.uuid4())
job_uri = f"https://s3-{REGION}.amazonaws.com/{BUCKET}/{asset.reference}"
transcribe.start_transcription_job(TranscriptionJobName=job_name, Media={'MediaFileUri': job_uri}, MediaFormat='wav', LanguageCode='en-US')
while True:
 status = transcribe.get_transcription_job(TranscriptionJobName=job_name)
 if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:
 break
 print("Still working on the transcription....")
 time.sleep(5)
upload the transcript text to Preservica
if status['TranscriptionJob']['TranscriptionJobStatus'] == 'COMPLETED':
 result_url = status['TranscriptionJob']['Transcript']['TranscriptFileUri']
 json = requests.get(result_url).json()
 text = json['results']['transcripts'][0]['transcript']
 xml_object = xml.etree.ElementTree.Element('tns:Transcript', {"xmlns:tns": "https://aws.amazon.com/transcribe/"})
 xml.etree.ElementTree.SubElement(xml_object, "Transcription").text = text
 xml_request = xml.etree.ElementTree.tostring(xml_object, encoding='utf-8', xml_declaration=True).decode('utf-8')
 client.add_metadata(asset, "https://aws.amazon.com/transcribe/", xml_request) # add the xml transcript
 s3_client.delete_object(Bucket=BUCKET, Key=asset.reference) # delete the temp file from s3
 os.remove(f"{asset.reference}.wav") # delete the local copy

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyPreservica	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	active (pyPreservica.Generation attribute)

 	add_identifier() (pyPreservica.EntityAPI method)

 	add_metadata() (pyPreservica.EntityAPI method)

 	
 	all_descendants() (pyPreservica.EntityAPI method)

 	Asset (class in pyPreservica)

 	asset (pyPreservica.Representation attribute)

 	asset() (pyPreservica.EntityAPI method)

B

 	
 	Bitstream (class in pyPreservica)

 	
 	bitstream_content() (pyPreservica.EntityAPI method)

 	bitstreams (pyPreservica.Generation attribute)

C

 	
 	children() (pyPreservica.EntityAPI method)

 	content_object() (pyPreservica.EntityAPI method)

 	
 	content_objects() (pyPreservica.EntityAPI method)

 	ContentObject (class in pyPreservica)

 	create_folder() (pyPreservica.EntityAPI method)

D

 	
 	delete_asset() (pyPreservica.EntityAPI method)

 	delete_folder() (pyPreservica.EntityAPI method)

 	delete_identifiers() (pyPreservica.EntityAPI method)

 	delete_metadata() (pyPreservica.EntityAPI method)

 	descendants() (pyPreservica.EntityAPI method)

 	
 	description (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	download() (pyPreservica.EntityAPI method)

E

 	
 	effective_date (pyPreservica.Generation attribute)

 	Entity (class in pyPreservica)

 	entity() (pyPreservica.EntityAPI method)

 	entity_type (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	
 	EntityAPI (class in pyPreservica)

F

 	
 	filename (pyPreservica.Bitstream attribute)

 	fixity (pyPreservica.Bitstream attribute)

 	
 	Folder (class in pyPreservica)

 	folder() (pyPreservica.EntityAPI method)

 	format_group (pyPreservica.Generation attribute)

G

 	
 	Generation (class in pyPreservica)

 	
 	generations() (pyPreservica.EntityAPI method)

I

 	
 	identifier() (pyPreservica.EntityAPI method)

 	
 	identifiers_for_entity() (pyPreservica.EntityAPI method)

L

 	
 	length (pyPreservica.Bitstream attribute)

M

 	
 	metadata (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	
 	metadata() (pyPreservica.EntityAPI method)

 	metadata_for_entity() (pyPreservica.EntityAPI method)

 	move() (pyPreservica.EntityAPI method)

 	move_async() (pyPreservica.EntityAPI method)

 	move_sync() (pyPreservica.EntityAPI method)

N

 	
 	name (pyPreservica.Representation attribute)

O

 	
 	original (pyPreservica.Generation attribute)

P

 	
 	parent (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	
 	pyPreservica (module)

R

 	
 	reference (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	
 	rep_type (pyPreservica.Representation attribute)

 	Representation (class in pyPreservica)

 	representations() (pyPreservica.EntityAPI method)

S

 	
 	save() (pyPreservica.EntityAPI method)

 	security_tag (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	
 	security_tag_async() (pyPreservica.EntityAPI method)

 	security_tag_sync() (pyPreservica.EntityAPI method)

T

 	
 	thumbnail() (pyPreservica.EntityAPI method)

 	title (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

U

 	
 	update_metadata() (pyPreservica.EntityAPI method)

 	updated_entities() (pyPreservica.EntityAPI method)

 	
 	upload_zip_package() (pyPreservica.UploadAPI method)

 	UploadAPI (class in pyPreservica)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/simple_asset_package.png
H

E—

Asset

Key

Representations

Intellectual Entities

Bitstream: my-image.jpg)

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyPreservica’s documentation

_images/entity-API.jpg
E Structural

Object

i

Information
Object

1

Representation

1

Content Object

X

Generation

I

Bitstream

_static/up.png

_images/excel.png
/> 5 OneDrive - Preservica > Projects > |

metadata-spreadsheet

CSV UTF-8 (Comma delimited) (*.csv)

More options.

7 New Folder

rem

_static/up-pressed.png

