
pyPreservica

James Carr

May 01, 2024

TABLE OF CONTENTS:

1 Why Should I Use This? 3

2 SDK Features 5
2.1 Entity API Features . 5
2.2 Content API Features . 5
2.3 Upload API Features . 6
2.4 Admin API Features . 6
2.5 Retention Management API Features . 6
2.6 Workflow API Features . 6
2.7 Webhook API Features . 6
2.8 Authority Records API Features . 7

3 Background 9

4 PIP Installation 13

5 Get the Source Code 15

6 Contributing 17

7 Support 19

8 Examples 21

9 Authentication 23

10 2 Factor Authentication 25

11 SSL Certificates 27

12 Application Logging 29

13 Entity API 31
13.1 Fetching Entities (Assets, Folders & Content Objects) . 31
13.2 Fetching Children of Entities . 32
13.3 Creating new Folders . 34
13.4 Adding Physical Assets . 34
13.5 Updating Entities . 34
13.6 Security Tags . 35
13.7 3rd Party External Identifiers . 35
13.8 Descriptive Metadata . 37
13.9 Relationships Between Entities . 38

i

13.10 Representations, Content Objects & Generations . 39
13.11 Integrity Check History . 42
13.12 Moving Entities . 42
13.13 Deleting Entities . 42
13.14 Finding Updated Entities . 43
13.15 Downloading Files . 43
13.16 Events on Specific Entities . 44
13.17 Events Across Entities . 44
13.18 Ingest Events . 44
13.19 Asset and Folder Thumbnail Images . 44
13.20 Replacing Content Objects . 45
13.21 Export OPEX Package . 45

14 Content API 47
14.1 object-details . 47
14.2 indexed-fields . 48
14.3 Search . 48
14.4 Search Progress . 49
14.5 Reporting Examples . 50

14.5.1 Create a spreadsheet containing all Assets within the repository 50
14.5.2 Create a spreadsheet containing all Assets and Folders within the repository 51
14.5.3 Create a spreadsheet containing all Assets and Folders underneath a specific folder 51

14.6 User Security Tags . 52

15 Upload API 53
15.1 Uploading Packages . 53
15.2 Monitoring Upload Progress . 54
15.3 Creating Packages . 55
15.4 Creating Packages with Multiple Representations . 58
15.5 Custom Fixity Generation . 58
15.6 Bulk Package Creation . 59
15.7 Package Examples . 60

15.7.1 Ingest a single digital file as an asset, with a progress bar during upload, delete the package
after upload has completed. 60

15.7.2 Ingest a single digital file as an asset, with a custom asset Title and Description 60
15.7.3 Ingest each jpeg file in a directory as an individual asset . 61
15.7.4 Ingest a single digital file as an asset with a 3rd party identifier and custom metadata 61
15.7.5 Create a single Asset with 2 Representations (Preservation and Access) each Representation

has 1 Content Object . 62
15.7.6 Create a package with 1 Asset 2 Representations (Preservation and Access) and multiple

Content Objects (one for every image) . 62
15.8 Spreadsheet Metadata . 63
15.9 Ingest Web Video . 64
15.10 Ingest Twitter Feeds . 66
15.11 Crawl and ingest from a filesystem . 66

16 Workflow API 67
16.1 Fetching Workflow Contexts . 67
16.2 Fetching Workflow Instances . 68
16.3 Starting Workflows . 68

17 Admin API 71
17.1 Metadata Management (XSD Schema’s, XML Documents & XSLT Transforms) 71
17.2 User Management . 74
17.3 Security Tags . 75

ii

18 Retention API 77
18.1 Retention Policies . 77
18.2 Retention Assignments . 78

19 Registry API 79
19.1 Non-Authenticated Read Access . 79

20 Monitor API 83
20.1 Monitors . 83
20.2 Messages . 83
20.3 Monitor Timeseries . 84

21 WebHook API 85
21.1 Subscribing . 85
21.2 Listing Subscriptions . 86
21.3 Unsubscribe . 86
21.4 Reference Web Server . 86

22 Authority Records API 89
22.1 Authority Tables . 89
22.2 Authority Records . 90

23 Example Applications 93

24 Developer Interface 97
24.1 Entity API . 97
24.2 Content API . 110
24.3 Upload API . 111
24.4 Retention Management API . 115
24.5 Workflow API . 117
24.6 Administration and Management API . 119
24.7 Process Monitor API . 124
24.8 WebHook API . 125
24.9 Authority Records API . 126

25 Index 129

Python Module Index 131

Index 133

iii

iv

pyPreservica

Release v2.6.7.

pyPreservica is an open source, python client for the Preservica APIs

pyPreservica is a 3rd party Python Software Development Kit (SDK) for the Preservica API, which allows Preservica
users to write software that makes use of the Preservica repository services. This library provides classes for working
with a range of the Preservica APIs.

https://developers.preservica.com/api-reference

This version of the documentation is for use against a Preservica 7.0-6.2 systems For Preservica 6.0 and 6.1 see the
previous version

pyPreservica is an open source 3rd party library and is not affiliated with Preservica Ltd There is no support for use of
the library by Preservica Ltd. For support see Support

TABLE OF CONTENTS: 1

https://pypi.org/project/pyPreservica/
https://pypi.org/project/pyPreservica/
https://pypi.org/project/pyPreservica/
https://pypreservica.readthedocs.io/en/latest
https://developers.preservica.com/api-reference
https://pypreservica.readthedocs.io/en/v6.1/
https://pypreservica.readthedocs.io/en/v6.1/
https://preservica.com/

pyPreservica

2 TABLE OF CONTENTS:

CHAPTER

ONE

WHY SHOULD I USE THIS?

The goal of pyPreservica is to allow you to make use of the Preservica Entity API for reading and writing objects within
a Preservica repository without having to manage the underlying REST HTTPS requests and XML parsing. The library
provides a level of abstraction which reflects the underlying data model, such as structural and information objects.

The pyPreservica library allows Preservica users to build applications which interact with the repository such as meta-
data synchronisation with 3rd party systems etc.

Hint: Access to the Preservica API’s for the cloud hosted system does depend on which Preservica Edition has been
licensed. See https://preservica.com/digital-archive-software/products-editions for details.

3

https://preservica.com/digital-archive-software/products-editions

pyPreservica

4 Chapter 1. Why Should I Use This?

CHAPTER

TWO

SDK FEATURES

2.1 Entity API Features

• Fetch and Update Entity Objects (Folders, Assets, Content Objects)

• Add, Delete and Update External Identifiers

• Add, Delete and Update Descriptive Metadata Fragments

• Change Security tags on Folders and Assets

• Create new Folder Entities

• Move Assets and Folders within the repository

• Deleting Assets and Folders

• Fetch Folders and Assets belonging to parent Folders

• Retrieve Representations, Generations & Bitstreams from Assets

• Download digital files and thumbnails

• Fetch lists of changed entities over the last n days

• Request information on completed integrity checks

• Add or remove asset and folder icons

• Replace existing content objects within an Asset

• Export OPEX Package

• Fetch audit trail events on Entities and across the repository

• Create Relationships between Assets

2.2 Content API Features

• Fetch a list of indexed Solr Fields

• Search based on a single query term

• Filtered searches on indexed fields

5

pyPreservica

2.3 Upload API Features

• Create single Content Object Packages with multiple Representations

• Create multiple Content Object Packages with multiple Representations

• Upload packages to Preservica

• Spreadsheet Metadata

• Ingest Web Video

• Ingest Twitter Feeds

2.4 Admin API Features

• Schema Management (XML Templates, XSD Schema’s & XSLT Transforms)

• User Management (create and remove user accounts)

• Security Tags (add and remove security tags)

2.5 Retention Management API Features

• Create new retention policies

• Delete retention policies

• Update retention policies

• Assign retention policies to entities

2.6 Workflow API Features

• Get Workflow Contexts

• Get Workflow Instance

• Start Workflow Instances

2.7 Webhook API Features

• Subscribe to Webhook endpoints

• Unsubscribe

• List Subscriptions

6 Chapter 2. SDK Features

pyPreservica

2.8 Authority Records API Features

• Get an Authority table by its reference

• List all Authority tables

• Return all records from a Authority table

• Add records to an Authority table

• Delete records from an Authority table

2.8. Authority Records API Features 7

pyPreservica

8 Chapter 2. SDK Features

CHAPTER

THREE

BACKGROUND

They key to working with the pyPreservica library is that the services follow the Preservica core data model closely.

9

pyPreservica

The Preservica data model represents a hierarchy of entities, starting with the structural objects which are used to
represent aggregations of digital assets. Structural objects define the organisation of the data. In a library context they
may be referred to as collections, in an archival context they may be Fonds, Sub-Fonds, Series etc and in a records
management context they could be simply a hierarchy of folders or directories.

These structural objects may contain other structural objects in the same way as a computer filesystem may contain
folders within folders.

Within the structural objects comes the information objects. These objects which are sometimes referred to as the
digital assets are what PREMIS defines as an Intellectual Entity. Information objects are considered a single intellectual

10 Chapter 3. Background

pyPreservica

unit for purposes of management and description: for example, a book, document, map, photograph or database etc.

Representations are used to define how the information object are composed in terms of technology and structure. For
example, a book may be represented as a single multiple page PDF, a single eBook file or a set of single page image
files.

Representations are usually associated with a use case such as access or long-term preservation. All Information objects
have a least one representation defined by default. Multiple representations can be either created outside of Preservica
through a process such as digitisation or within Preservica through preservation processes such a normalisation.

Content Objects represent the components of the asset. Simple assets such as digital images may only contain a single
content object whereas more complex assets such as books or 3d models may contain multiple content objects. In most
cases content objects will map directly to digital files or bitstreams.

Generations represent changes to content objects over time, as formats become obsolete new generations may need to
be created to make the information accessible.

Bitstreams represent the actual computer files as ingested into Preservica, i.e. the TIFF photograph or the PDF docu-
ment.

11

pyPreservica

12 Chapter 3. Background

CHAPTER

FOUR

PIP INSTALLATION

pyPreservica is available from the Python Package Index (PyPI)

https://pypi.org/project/pyPreservica/

pyPreservica is built and tested against Python 3.8. Older versions of Python may not work.

To install pyPreservica, simply run this simple command in your terminal of choice:

$ pip install pyPreservica

or you can install in a virtual python environment using:

$ pipenv install pyPreservica

pyPreservica is under active development and the latest version is installed using

$ pip install --upgrade pyPreservica

13

https://pypi.org/project/pyPreservica/

pyPreservica

14 Chapter 4. PIP Installation

CHAPTER

FIVE

GET THE SOURCE CODE

pyPreservica is developed on GitHub, where the code is always available.

You can clone the public repository

$ git clone git://github.com/carj/pyPreservica.git

15

https://github.com/carj/pyPreservica

pyPreservica

16 Chapter 5. Get the Source Code

CHAPTER

SIX

CONTRIBUTING

Bug reports and pull requests are welcome on GitHub at https://github.com/carj/pyPreservica

17

https://github.com/carj/pyPreservica

pyPreservica

18 Chapter 6. Contributing

CHAPTER

SEVEN

SUPPORT

pyPreservica is 3rd party open source client and is not affiliated or supported by Preservica Ltd

For announcements about new versions and discussion of pyPreservica please subscribe to the google groups forum
https://groups.google.com/g/pypreservica

Bug reports can be raised directly on either GitHub or on the google group forum

General questions and queries about using pyPreservica posted on the google group forum above.

19

https://preservica.com/
https://groups.google.com/g/pypreservica
https://github.com/carj/pyPreservica

pyPreservica

20 Chapter 7. Support

CHAPTER

EIGHT

EXAMPLES

Using the python console, create the entity API client object and request an Asset (Information Object) by its unique
reference and display some of its attributes.

All entities within the Preservica system have one unique reference which can be used to retrieve them.

The reference used to fetch entities (Assets, Folders) is the Preservica internal unique identifier. This is a universally
unique identifier (UUID)

You can find the reference when viewing the object metadata within Explorer. Later on we will look at how we can
fetch entities using other 3rd party external identifiers which may be more meaningful such as ISBNs DOIs etc.

To create the client object you will need valid credentials to connect to the Preservica server. See the following section
on available authentication options.

>>> from pyPreservica import *
>>> client = EntityAPI()
>>> client
pyPreservica version: 0.8.5 (Preservica 6.2 Compatible)
Connected to: us.preservica.com Version: 6.2.0 as test@test.com
>>> asset = client.asset("dc949259-2c1d-4658-8eee-c17b27a8823d")
>>> asset.reference
'dc949259-2c1d-4658-8eee-c17b27a8823d'
>>> asset.title
'LC-USZ62-20901'
>>> asset.parent
'ae108c8f-b058-4228-b099-6049175d2f0c'
>>> asset.security_tag
'open'
>>> asset.entity_type
<EntityType.ASSET: 'IO'>

If your credentials are valid, pyPreservica returns a client object which is the connection to the server. Printing the
client returns information about the connection such as the server and the user name etc. This can be useful to check
that you are connected to the correct system.

All entities have a parent reference attribute, for Assets this always points to the parent Folder. For Content Objects
the parent points to the Asset and for Folders it points to the parent Folder if it exists. Folders at the root level of the
repository do not have a parent and the attribute returns the special Python value of None

This example shows how pyPreservica can be used to upload and ingest a local file, picture.tiff into Preservica using
the UploadAPI class. The tiff file will be ingested as a new Asset object inside the existing Preservica folder given by
the folder UUID. The simple_asset_package function creates the package, in this case an XIPv6 formatted package
and the upload_zip_package method uploads it directly to the Preservica server using the S3 protocol.

21

https://en.wikipedia.org/wiki/Universally_unique_identifier

pyPreservica

>>> from pyPreservica import *

>>> client = UploadAPI()
>>> folder = "dc949259-2c1d-4658-8eee-c17b27a8823d"
>>> zip_p = simple_asset_package(preservation_file="picture.tiff", parent_folder=folder)
>>> client.upload_zip_package(zip_p)

22 Chapter 8. Examples

CHAPTER

NINE

AUTHENTICATION

pyPreservica provides 4 different methods for authentication. The library requires the username and password of a
Preservica user and an optional Tenant identifier along with the server hostname.

Tip: The Tenant parameter is now optional when connecting to a Preservica 6.3 system.

1 Method Arguments

Include the user credentials as arguments to the EntityAPI Class

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="123444",
tenant="PREVIEW", server="preview.preservica.com")

If you don’t want to include your Preservica credentials within your python script because you are sharing scripts or
using a version control system then one of the following two methods should be used.

2 Environment Variable

Export the credentials as environment variables as part of the session

$ export PRESERVICA_USERNAME="test@test.com"
$ export PRESERVICA_PASSWORD="123444"
$ export PRESERVICA_TENANT="PREVIEW"
$ export PRESERVICA_SERVER="preview.preservica.com"

$ python3

from pyPreservica import *

client = EntityAPI()

3 Properties File

Create a properties file called “credentials.properties” with the following property names and save to the working
directory

[credentials]
username=test@test.com
password=123444
tenant=PREVIEW
server=preview.preservica.com

23

pyPreservica

from pyPreservica import *

client = EntityAPI()

You can create a new credentials.properties file automatically using the save_config() method

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="123444",
tenant="PREVIEW", server="preview.preservica.com")

client.save_config()

4 Shared Secrets

pyPreservica now supports authentication using shared secrets rather than a login account username and password. This
allows a trusted external applications such as pyPreservica to acquire a Preservica API authentication token without
having to use a set of login credentials.

This option is useful if you want to provide limited API access to a 3rd party without providing login access to Preser-
vica.

To use the shared secret authentication you need to add a secure secret key to your Preservica system.

The username, password, tenant and server attributes are used as normal, the password field now holds the shared secret
and not the users password.

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="shared-secret", tenant="PREVIEW",
server="preview.preservica.com", use_shared_secret=True)

If you are using a credentials.properties file then

from pyPreservica import *

client = EntityAPI(use_shared_secret=True)

24 Chapter 9. Authentication

CHAPTER

TEN

2 FACTOR AUTHENTICATION

pyPreservica now supports the new 2-Factor authentication for APIs introduced with Preservica 6.8

The Preservica system should be first setup for 2-Factor authentication and the one time password key used to seed the
2FA (HMAC-Based One-Time Password Algorithm) should be retained and used with the API.

The one time password or seed key is available to view and should be saved when setting up the 2FA for a user. You
can find the two factor seed key from the user 2FA setup page under the “Reveal Key” button at the bottom of the page.

Keep this key secret along with your account password as it will be required when authenticating the API calls.

To call pyPreservica once 2-Factor authentication process has been setup, you need the username and password as
normal along with the additional two factor key.

You can pass the additional two factor key as an argument to the constructor for the API classes or use environment
variables or the credentials file.

25

pyPreservica

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="my-login-password", tenant=
→˓"PREVIEW",

server="preview.preservica.com", two_fa_secret_key=
→˓"AJC5DEGUVM6UQ1TT")

The environment variable for holding the 2 factor seed key is called PRESERVICA_2FA_TOKEN and the credential
file property name is twoFactorToken.

$ export PRESERVICA_2FA_TOKEN=AJC5DEGUVM6UQ1TT

i.e

[credentials]
username=test@test.com
password=123444
tenant=PREVIEW
server=preview.preservica.com
twoFactorToken=AJC5DEGUVM6UQ1TT

Tip: Preservica uses time based One Time Passwords (OTP), this means the time on your local machine must match
time on the server.

26 Chapter 10. 2 Factor Authentication

CHAPTER

ELEVEN

SSL CERTIFICATES

pyPreservica will by default connect to servers which use the https:// protocol and will always validate certificates when
connected via https.

For Enterprise on Premise customers on secure networks, you can change the default protocol to use http:// via the
constructor.

client = EntityAPI(protocol="http")

pyPreservica uses the Certifi project to provide SSL certificate validation.

Self-signed certificates used by on-premise deployments are not part of the Certifi certification authority (CA) bundle
and therefore need to be set explicitly.

The CA bundle is a file that contains root and intermediate certificates. The end-entity certificate along with a CA
bundle constitutes the certificate chain.

For on-premise deployments the trusted CAs can be specified through the REQUESTS_CA_BUNDLE environment vari-
able. e.g.

$ export REQUESTS_CA_BUNDLE=/usr/local/share/ca-certificates/my-server.cert

27

https://
http://
https://pypi.org/project/certifi/

pyPreservica

28 Chapter 11. SSL Certificates

CHAPTER

TWELVE

APPLICATION LOGGING

You can add logging to your pyPreservica scripts by simply including the following

import logging
from pyPreservica import *

logging.basicConfig(level=logging.DEBUG)

client = EntityAPI()

This will log all messages from level DEBUG or higher to standard output, i.e the console.

When logging to files, the main thing to be wary of is that log files need to be rotated regularly. The application needs
to detect the log file being renamed and handle that situation. While Python provides its own file rotation handler, it is
best to leave log rotation to dedicated tools such as logrotate. The WatchedFileHandler will keep track of the log file
and reopen it if it is rotated, making it work well with logrotate without requiring any specific signals.

Here’s a sample implementation.

import logging
import logging.handlers
import os

from pyPreservica import *

handler = logging.handlers.WatchedFileHandler("pyPreservica.log")
formatter = logging.Formatter(logging.BASIC_FORMAT)
handler.setFormatter(formatter)
root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(handler)

client = EntityAPI()

29

pyPreservica

30 Chapter 12. Application Logging

CHAPTER

THIRTEEN

ENTITY API

Making a call to the Preservica repository is very simple.

Begin by importing the pyPreservica module at the start of the Python script. You can import only the API you need
or the whole library.

To import all the pyPreservica functionality use:

from pyPreservica import *

Now, let’s create the EntityAPI client object, this can have any name, but lets call it client to keep things simple.

client = EntityAPI()

The client object will manage the connection to the server and will be responsible for creating the API authentication
tokens as needed.

13.1 Fetching Entities (Assets, Folders & Content Objects)

The following Python code examples show how data model entities, (Assets, Folders & Content Objects) can be returned
from Preservica using their internal Preservica identifiers.

The following shows how you can fetch an Asset by its reference and then print its attributes to the screen.

from pyPreservica import *

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
print(asset.reference)
print(asset.title)
print(asset.description)
print(asset.security_tag)
print(asset.parent)
print(asset.entity_type)

We can also fetch the same attributes for both Folders

folder = client.folder("0b0f0303-6053-4d4e-a638-4f6b81768264")
print(folder.reference)
print(folder.title)
print(folder.description)
print(folder.security_tag)

(continues on next page)

31

pyPreservica

(continued from previous page)

print(folder.parent)
print(folder.entity_type)

and Content Objects

content_object = client.content_object("1a2a2101-6053-4d4e-a638-4f6b81768264")
print(content_object.reference)
print(content_object.title)
print(content_object.description)
print(content_object.security_tag)
print(content_object.parent)
print(content_object.entity_type)

Assets, Folders & Content Objects actually have a number of attributes in common, such as title, description etc.
Technically they are all objects of type Entity.

We can fetch any of Assets, Folders and Content Objects using the entity type and the unique reference

asset = client.entity(EntityType.ASSET, "9bad5acf-e7a1-458a-927d-2d1e7f15974d")

folder = client.entity(EntityType.FOLDER, asset.parent)

To get a list of parent Folders of an Asset all the way to the root of the repository

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")

folder = client.folder(asset.parent)
print(folder.title)
while folder.parent is not None:

folder = client.folder(folder.parent)
print(folder.title)

13.2 Fetching Children of Entities

The immediate children of a Folder can also be retrieved using the library.

To get all the top level or root Folders use

for root_folder in client.descendants(None):
print(root_folder.title)

or you can leave the arguments empty:

for root_folder in client.descendants():
print(root_folder.title)

The descendants method is a generator function. The method behaves like an iterator, i.e. it can be used in a for
loop, the advantage of this approach is that the paging of results is taken care of automatically. If a Folder has many
thousands of Assets then the method will make multiple calls to the server. It will default to 100 items between server
requests.

The performance improvement from the use of generators is the result of the lazy (on demand) generation of values,
which translates to lower memory usage. Furthermore, you do not need to wait until all the children have been generated

32 Chapter 13. Entity API

pyPreservica

before you start to use them.

To get a set of the immediate children of a particular Folder use

for entity in client.descendants(folder.reference):
print(entity.title)

To get the siblings of an Asset you can use

for entity in client.descendants(asset.parent):
print(entity.title)

The set of entities returned may contain both Assets and other Folders.

Note: Entities within the returned set only contain the attributes (type, reference and title). If you need the full object
you have to request it from the server.

You can request the entity back without knowing exactly what type it is by using the entity() call

To fetch the full object back you can use:

for f in client.descendants():
e = client.entity(f.entity_type, f.reference)
print(e)

If you only need the Folders or Assets from a parent you can filter the results using a pre-defined filter.

For example the following will only return Asset objects and will ignore Folders:

for asset in filter(only_assets, client.descendants(asset.parent)):
print(asset.title)

To return only Folder objects use:

for folders in filter(only_folders, client.descendants(asset.parent)):
print(folders.title)

If you want all the entities below a point in the hierarchy, i.e a recursive list of all folders and Assets then you can call
all_descendants() this is also generator function which returns a lazy iterator which will make repeated calls to the
server for each page of results.

The following will return all entities within the repository from the root folders down

for e in client.all_descendants():
print(e.title)

Warning: The code above will fetch every Asset or Folder back from the system. This could take a long time
depending on the size of the repository.

It may be more efficient to search using the ContentAPI if you are looking for particular objects in the repository.

again if you need a list of every Asset in the system you can filter using

for asset in filter(only_assets, client.all_descendants()):
print(asset.title)

13.2. Fetching Children of Entities 33

pyPreservica

13.3 Creating new Folders

Folder objects can be created directly in the repository, the create_folder() function takes 3 mandatory parameters,
folder title, description and security tag.

new_folder = client.create_folder("title", "description", "open")
print(new_folder.reference)

This will create a folder at the top level of the repository. You can create child folders by passing the reference of the
parent as the last argument.

new_folder = client.create_folder("title", "description", "open", folder.reference)
print(new_folder.reference)
assert new_folder.parent == folder.reference

13.4 Adding Physical Assets

Preservica supports the creation of intellectual entities which correspond to physical objects. These are similar to
regular assets, but they do not point to digital files like regular assets.

To use Physical Assets the system needs a system property set to active the functionality, this can be done by the
Preservica help desk.

parent = client.folder("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
physical_asset = client.add_physical_asset("title", "description", parent, "open")
print(physical_asset.reference)

Physical assets support 3rd party identifiers, thumbnails and descriptive metadata in the same way as regular assets.

client.add_identifier(physical_asset, "ISBN", "978-3-16-148410-0")
client.add_thumbnail(physical_asset, "icon.png")

13.5 Updating Entities

We can update either the title or description attribute for Assets, Folders and Content Objects using the save() method

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
asset.title = "New Asset Title"
asset.description = "New Asset Description"
asset = client.save(asset)

folder = client.folder("0b0f0303-6053-4d4e-a638-4f6b81768264")
folder.title = "New Folder Title"
folder.description = "New Folder Description"
folder = client.save(folder)

content_object = client.content_object("1a2a2101-6053-4d4e-a638-4f6b81768264")
content_object.title = "New Content Object Title"
content_object.description = "New Content Object Description"
content_object = client.save(content_object)

34 Chapter 13. Entity API

pyPreservica

This method can also be used to set the Type of an asset or folder. By default Information objects have a type “Asset”
and Structural objects have a type “Folder”. You can use the API to change these defaults for example you may want
to use the type field to set the level of description of a Structural object to “Fonds” or “Series” etc.

To change the type use the custom_type attribute on the object, e.g.

folder = client.folder("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
folder.custom_type = "Series"
folder = client.save(folder)

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
asset.custom_type = "Manuscript"
asset = client.save(asset)

If you want to change the type back, just set the value to None

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
asset.custom_type = None
asset = client.save(asset)

13.6 Security Tags

To change the security tag on an Asset or Folder we have a separate API. Since this may be a long running process.
You can choose either a asynchronous (non-blocking) call which returns immediately or synchronous (blocking call)
which waits for the security tag to be changed before returning.

This is the asynchronous call which returns immediately returning a process id

pid = client.security_tag_async(entity, new_tag)

You can determine the current status of the asynchronous call by passing the argument to get_async_progress

status = client.get_async_progress(pid)

The synchronous version will block until the security tag has been updated on the entity. This call does not recursively
change entities within a folder. It only applies to the named entity passed as an argument.

entity = client.security_tag_sync(entity, new_tag)

13.7 3rd Party External Identifiers

3rd party or external identifiers are a useful way to provide additional names or identities to objects to provide an
alternate way of accessing them. For example if you are synchronising metadata between an external metadata catalogue
and Preservica adding the catalogue identifiers to the Preservica objects allows the catalogue to query Preservica using
its own ids.

Each Preservica entity can hold as many external identifiers as you need.

Note: Adding, Updating and Deleting external identifiers is only available in version 6.1 and above

13.6. Security Tags 35

pyPreservica

We can add external identifiers to either Assets, Folders or Content Objects. External identifiers have a name or type
and a value. External identifiers do not have to be unique in the same way as internal identifiers. The same external
identifiers can be added to multiple entities to form sets of objects.

asset = client.asset("9bad5acf-e7ce-458a-927d-2d1e7f15974d")
client.add_identifier(asset, "ISBN", "978-3-16-148410-0")
client.add_identifier(asset, "DOI", "https://doi.org/10.1109/5.771073")
client.add_identifier(asset, "URN", "urn:isan:0000-0000-2CEA-0000-1-0000-0000-Y")

Fetch external identifiers on an entity. This call returns a set of tuples (identifier_type, identifier_value)

identifiers = client.identifiers_for_entity(folder)
for identifier in identifiers:

identifier_type = identifier[0]
identifier_value = identifier[1]

You can search the repository for entities with matching external identifiers. The call returns a set of objects which
may include any type of entity.

for e in client.identifier("ISBN", "978-3-16-148410-0"):
print(e.entity_type, e.reference, e.title)

Note: Entities within the set only contain the attributes (type, reference and title). If you need the full object you have
to request it.

For example

for ident in client.identifier("DOI", "urn:nbn:de:1111-20091210269"):
entity = client.entity(ident.entity_type, ident.reference)
print(entity.title)
print(entity.description)

To delete identifiers attached to an entity

client.delete_identifiers(entity)

Will delete all identifiers on the entity

client.delete_identifiers(entity, identifier_type="ISBN")

Will delete all identifiers which have type “ISBN”

client.delete_identifiers(entity, identifier_type="ISBN", identifier_value="978-3-16-
→˓148410-0")

Will only delete identifiers which match the type and value

36 Chapter 13. Entity API

pyPreservica

13.8 Descriptive Metadata

You can query an entity to determine if it has any attached descriptive metadata using the metadata attribute. This
returns a dictionary object the dictionary key is a url which can be used to the fetch metadata and the value is the
schema name

for url, schema in entity.metadata.items():
print(url, schema)

The descriptive XML metadata document can be returned as a string by passing the key of the map (url) to the
metadata() method

for url in entity.metadata:
xml_string = client.metadata(url)

An alternative is to call the metadata_for_entity directly

xml_string = client.metadata_for_entity(entity, "https://person.org/person")

this will fetch the first metadata document which matches the schema argument on the entity

If you need all the descriptive XML fragments attached to an Asset or Folder you can call all_metadata this is a
Generator which returns a Tuple containing the schema as the first item and the xml document in the second.

for metadata in client.all_metadata(entity):
schema = metadata[0]
xml_string = metadata[1]

Metadata can be attached to entities either by passing an XML document as a string

folder = entity.folder("723f6f27-c894-4ce0-8e58-4c15a526330e")

xml = "<person:Person xmlns:person='https://person.org/person'>" \
"<person:Name>Bob Smith</person:Name>" \
"<person:Phone>01234 100 100</person:Phone>" \
"<person:Email>test@test.com</person:Email>" \
"<person:Address>Abingdon, UK</person:Address>" \
"</person:Person>"

folder = client.add_metadata(folder, "https://person.org/person", xml)

or by reading the metadata from a file

with open("DublinCore.xml", 'r', encoding="utf-8") as md:
asset = client.add_metadata(asset, "http://purl.org/dc/elements/1.1/", md)

Adding descriptive metadata may change the namespace prefix values, this does not change the meaning of the XML
document as the prefix values are arbitrary labels. XML namespace prefixes themselves are arbitrary; it’s only through
their binding to a full XML namespace name that they derive their significance.

If you want to preserve the namespace prefix you can add the following to the start of your Python scripts

xml.etree.ElementTree.register_namespace("person", "https://person.org/person")

This will associate the namespace prefix “person” with the actual XML namespace

13.8. Descriptive Metadata 37

pyPreservica

Descriptive metadata can also be updated to amend values or change the document structure To update an existing
metadata document call

client.update_metadata(entity, schema, xml_string)

For example the following python fragment appends a new element to an existing document.

folder = client.folder("723f6f27-c894-4ce0-8e58-4c15a526330e") # call into the API

for url, schema in folder.metadata.items():
if schema == "https://person.org/person":

xml_string = client.metadata(url) # call into the API
xml_document = ElementTree.fromstring(xml_string)
postcode = ElementTree.Element('{https://person.org/person}Postcode')
postcode.text = "OX14 3YS"
xml_document.append(postcode)
xml_string = ElementTree.tostring(xml_document, encoding='UTF-8').decode("utf-8")
client.update_metadata(folder, schema, xml_string) # call into the API

13.9 Relationships Between Entities

Preservica allows arbitrary relationships between entities such as Assets and Folders. These relationships appear in the
Preservica user interface as links from one entity to another. All entities have existing vertical parent child relationships
which determine the level of description for an asset. These relationships are additional relationships which relate
different entities across the repository.

For example relationships may be used to link different editions of the same work, or a translation of an existing
document etc.

Any type of relationship is supported, for example The Dublin Core Metadata Initiative provide a set of standard
relationships between entities, and these have been provided as part of the Relationship class, but any text string is
allowed for the relationship type.

>>>Relationship.DCMI_isVersionOf
http://purl.org/dc/terms/isVersionOf

>>>Relationship.DCMI_isReplacedBy
http://purl.org/dc/terms/isReplacedBy

Relationships are created between two entities A and B and have a type, for example;

A isVersionOf B.

This is a relationship from A to B. You can also create links going in the other direction and have bi-directional links
between the same assets. For example;

A isVersionOf B and B hasVersion A.

To create a relationship between entities use the add_relation method.

A_asset = client.asset("de1c32a3-bd9f-4843-a5f1-46df080f83d2")
B_asset = client.asset("683f9db7-ff81-4859-9c03-f68cfa5d9c3d")

client.add_relation(A_asset, Relationship.DCMI_isVersionOf, B_asset)
client.add_relation(B_asset, Relationship.DCMI_hasVersion, A_asset)

(continues on next page)

38 Chapter 13. Entity API

pyPreservica

(continued from previous page)

client.add_relation(A_asset, "Supersedes", B_asset)

Note: The Relationship API is only available when connected to Preservica version 6.3.1 or above

You can list the relationships from an asset using:

for r in client.relationships(A_asset):
print(r)

This returns a Generator of Relationship objects.

To delete relationships between assets use:

client.delete_relationships(A_asset)

This will delete all relationships FROM the specified entity to another entity, It does not delete relationships TO this
entity.

If only need to delete a specific relationship, you can pass the relationship name as a second argument

client.delete_relationships(A_asset, "Supersedes")

13.10 Representations, Content Objects & Generations

Each Asset in Preservica contains one or more representations, such as Preservation or Access etc. All Assets have at
least one Preservation representation which is created when the Asset is ingested.

To get a list of all the representations of an Asset use representations() which returns a set of Representation
objects for the Asset.

The Representation contains the name and type and also contains a reference back to its parent Asset object.

Currently Preservica supports two representation types “Access” and “Preservation”, you can have as many represen-
tations of each type as you need. For example a book may need two “Access” representations one containing a single
PDF document and another containing multiple JPEG images, one for each page etc.

for representation in client.representations(asset):
print(representation.rep_type)
print(representation.name)
print(representation.asset.title)

Each Representation will contain one or more Content Objects. Simple Assets contain a single Content Object per
Representation whereas more complex objects such as 3D models, books, multi-page documents may have several
content objects within each Representation.

Content Objects are similar to Assets and Folders, in that they can also contain descriptive metadata and identifiers etc.
The Content Objects within a Representation do have a natural order which is preserved within the Asset and therefore
are returned as a list object.

for content_object in client.content_objects(representation):
print(content_object.reference)

(continues on next page)

13.10. Representations, Content Objects & Generations 39

pyPreservica

(continued from previous page)

print(content_object.title)
print(content_object.description)
print(content_object.parent)
print(content_object.metadata)
print(content_object.asset.title)

By default the title of a Content Object will probably be the name of the underlying computer file, but it does not have
to be. You can explicitly set the title and description of each Content Object within an Asset. Preservica also supports
adding external identifiers and descriptive metadata documents to Content Objects.

Each Content Object will contain a least one Generation, migrated content may have multiple Generations.

for generation in client.generations(content_object):
print(generation.original)
print(generation.active)
print(generation.content_object)
print(generation.format_group)
print(generation.effective_date)
print(generation.bitstreams)

Each Generation has a list of BitStreams which can be used to fetch the actual content from the server or fetch technical
metadata about the bitstream itself.

Technical information such as formats and properties can be accessed from the Generation object. The format infor-
mation is stored as dictionary object within a list as there may be multiple formats associated with each object.

The key values for the format dictionary are: Valid, PUID, Priority, IdentificationMethod, FormatName, FormatVersion

for format in generation.formats:
for key,value in format.items():

print(key, value)

The technical properties of the file can be accessed via the properties attribute which is a list of dictionary objects.
Each property is a single dictionary object with the following keys: PUID, PropertyName, Value

for property in generation.properties:
for key,value in property.items():

print(key, value)

Generations also contain a list of bitstreams, these contain information about the bitstreams such as file size and fixity
etc.

for bitstream in generation.bitstreams:
print(bitstream.filename)
print(bitstream.length)
for algorithm,value in bitstream.fixity.items():

print(algorithm, value)

If you have an Asset object and you would like to fetch all the available bitstreams you would use something like:

for representation in client.representations(asset):
for content_object in client.content_objects(representation):

for generation in client.generations(content_object):
for bitstream in generation.bitstreams:

40 Chapter 13. Entity API

pyPreservica

If you only need the current or active Generations, then you can use the following short cut method which returns each
Bitstream from all the Representations and Content Objects within the Asset.

for bitstream in client.bitstreams_for_asset(asset):
do_something(bitstream)

The actual content files can be downloaded to a disk file using bitstream_content()

This will download the bitstream to the file path given by the second argument, to save the object using the original file
name use the following:

client.bitstream_content(bitstream, bitstream.filename)

To download all the access bitstreams to the current folder you would use.

for representation in client.representations(asset):
if representation.rep_type == "Access":

for content_object in client.content_objects(representation):
for generation in client.generations(content_object):

for bitstream in generation.bitstreams:
client.bitstream_content(bitstream, bitstream.filename)

The content files can be written to a byte array using bitstream_bytes() this returns a BytesIO object.

byte_array = client.bitstream_bytes(bitstream)

If you need to process bitstream content as it is downloaded from Preservica pyPreservica provides the following API.

for bitstream in client.bitstreams_for_asset(asset):
for chunk in client.bitstream_chunks(bitstream):

doSomeThing(chunk)

This function returns a Generator which allows the client to process parts of the file as its downloading.

The method also allows a second argument which defines the size of chunk returned.

chunk_size8k = 8*1024
for bitstream in client.bitstreams_for_asset(asset):

for chunk in client.bitstream_chunks(bitstream, chunk_size8k):
doSomeThing(chunk)

Since version Preservica 6.12 the API allows new Access representations to be added to an existing Asset. This allows
organisations to migrate content outside of Preservica or add new access versions after the preservation versions have
been ingested.

To add a new Access representation to an existing Asset call add_access_representation and pass the Asset and
a new content file. The function returns a process id which can be used to track the status of the ingest.

The Preservica tenancy requires the post.new.representation.feature flag to be set.

asset = client.asset("723f6f27-c894-4ce0-8e58-4c15a526330e")
pid = client.add_access_representation(asset, access_file="access.jpg")

13.10. Representations, Content Objects & Generations 41

pyPreservica

13.11 Integrity Check History

You can request the history of all integrity checks which have been carried out on a bitstream

for bitstream in generation.bitstreams:
for check in client.integrity_checks(bitstream):

print(check)

The list of returned checks includes both full and quick integrity checks.

Note: This call does not start a new check, it only returns information about previous checks.

13.12 Moving Entities

We can move entities between folders using the move call

client.move(entity, dest_folder)

Where entity is the object to move either an Asset or Folder and the second argument is destination folder where the
entity is moved to.

Folders can be moved to the root of the repository by passing None as the second argument.

entity = client.move(folder, None)

The move() call is an alias for move_sync() which is a synchronous (blocking call)

entity = client.move_sync(entity, dest_folder)

An asynchronous (non-blocking) version is also available which returns a progress id.

pid = client.move_async(entity, dest_folder)

You can determine the completed status of the asynchronous move call by passing the argument to
get_async_progress

status = client.get_async_progress(pid)

13.13 Deleting Entities

You can initiate and approve a deletion request using the API.

Note: Deletion is a two stage process within Preservica and requires two distinct sets of credentials. To use the delete
functions you must be using the “credentials.properties” authentication method.

Note: The Deletion API is only available when connected to Preservica version 6.2 or above

Add manager.username and manager.password to the credentials file.

42 Chapter 13. Entity API

pyPreservica

[credentials]
username=
password=
server=
tenant=
manager.username=
manager.password=

Deleting an asset

asset_ref = client.delete_asset(asset, "operator comments", "supervisor comments")
print(asset_ref)

Deleting a folder

folder_ref = client.delete_folder(folder, "operator comments", "supervisor comments")
print(folder_ref)

Warning: This API call deletes entities within the repository, it both initiates and approves the deletion request
and therefore must be used with care.

13.14 Finding Updated Entities

We can query Preservica for entities which have changed over the last n days using

for e in client.updated_entities(previous_days=30):
print(e)

The argument is the number of previous days to check for changes. This call does paging internally.

13.15 Downloading Files

The pyPreservica library also provides a web service call which is part of the content API which allows downloading
of digital content directly without having to request the Representations and Generations first. This call is a short-cut
to request the Bitstream from the latest Generation of the first Content Object in the Access Representation of an Asset.
If the asset does not have an Access Representation then the Preservation Representation is used.

For very simple assets which comprise a single digital file in a single Representation then this call will probably do
what you expect.

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
filename = client.download(asset, "asset.jpg")

For complex multi-part assets which have been through preservation actions it may be better to use the data model and
the bitstream_content() function to fetch the exact bitstream you need.

13.14. Finding Updated Entities 43

pyPreservica

13.16 Events on Specific Entities

List actions performed against this entity

entity_events() returns a iterator which contains events on an entity, either an asset or folder

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
for event in client.entity_events(asset)

print(event)

13.17 Events Across Entities

List actions performed against all entities within the repository. The event is a dict() object containing the event
attributes. This call is generator function which returns the events as needed.

for event in client.all_events():
print(event)

13.18 Ingest Events

Return a generator of ingest events over the last n days

for ingest_event in client.all_ingest_events(previous_days=1):
print(ingest_event)

13.19 Asset and Folder Thumbnail Images

You can now add and remove icons on Assets and Folders using the API. The icons will be displayed in the Explorer
and Universal Access interfaces.

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
client.add_thumbnail(folder, "../my-icon.png")

client.remove_thumbnail(folder)

and for assets

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
client.add_thumbnail(asset, "../my-icon.png")

client.remove_thumbnail(asset)

We also have a function to fetch the thumbnail image for an asset or folder

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
filename = client.thumbnail(asset, "thumbnail.png")

You can specify the size of the thumbnail by passing a second argument

44 Chapter 13. Entity API

pyPreservica

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
filename = client.thumbnail(asset, "thumbnail.png", Thumbnail.LARGE) ## 400×400 ␣
→˓pixels
filename = client.thumbnail(asset, "thumbnail.png", Thumbnail.MEDIUM) ## 150×150 ␣
→˓pixels
filename = client.thumbnail(asset, "thumbnail.png", Thumbnail.SMALL) ## 64×64 ␣
→˓pixels

13.20 Replacing Content Objects

Preservica now supports replacing individual Content Objects within an Asset. The use case here is you have uploaded
a large digitised object such as book and you subsequently discover that a page has been digitised incorrectly. You
would like to replace a single page (Content Object) without having to delete and re-ingest the complete Asset.

The non-blocking (asynchronous) API call will replace the last active Generation of the Content Object

content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
file = "C:/book/page421.tiff"
pid = client.replace_generation_async(content_object, file)

This will return a process id which can be used to monitor the replacement workflow using

status = client.get_async_progress(pid)

By default the API will generate a new fixity value on the client using the same fixity algorithm as the original Gener-
ation you are replacing. If you want to use a different fixity algorithm or you want to use a pre-calculated or existing
fixity value you can specify the algorithm and value.

content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
file = "C:/book/page421.tiff"
pid = client.replace_generation_async(content_object, file, fixity_algorithm='SHA1',␣
→˓fixity_value='2fd4e1c67a2d28fced849ee1bb76e7391b93eb12')

There is also an synchronous or blocking version which will wait for the replace workflow to complete before returning
back to the caller.

content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
file = "C:/book/page421.tiff"
workflow_status = client.replace_generation_sync(content_object, file)

13.21 Export OPEX Package

pyPreservica allows clients to request a full package export from the system by folder or asset, this will start an export
workflow and download the resulting dissemination package when the export workflow has completed.

The resulting package will be a zipped OPEX formatted package containing the digital content and metadata. The
export_opex API is a blocking call which will wait for the export workflow to complete before downloading the
package.

folder = client.folder('0f2997f7-728c-4e55-9f92-381ed1260d70')
opex_zip = client.export_opex(folder)

13.20. Replacing Content Objects 45

pyPreservica

The output is the name of the downloaded zip file in the current working directory.

By default the OPEX package includes metadata, digital content with the latest active generations and the parent hier-
archy.

The API can be called on either a folder or a single asset.

asset = client.asset('1f2129f7-728c-4e55-9f92-381ed1260d70')
opex_zip = client.export_opex(asset)

The call also takes the following optional arguments

• IncludeContent “Content” or “NoContent”

• IncludeMetadata “Metadata” or “NoMetadata” or “MetadataWithEvents”

• IncludedGenerations “LatestActive” or “AllActive” or “All”

• IncludeParentHierarchy “true” or “false”

e.g.

folder = client.folder('0f2997f7-728c-4e55-9f92-381ed1260d70')
opex_zip = client.export_opex(folder, IncludeContent="Content", IncludeMetadata=
→˓"MetadataWithEvents")

46 Chapter 13. Entity API

CHAPTER

FOURTEEN

CONTENT API

pyPreservica now contains interfaces to the content API which supports searching the repository.

https://us.preservica.com/api/content/documentation.html

The content API is a readonly interface which returns json documents rather than XML and which has some duplication
with the entity API, but it does contain search capabilities.

The content API client is created using

from pyPreservica import *

client = ContentAPI()

14.1 object-details

Get the details for a Asset or Folder as a Python dictionary object containing CMIS attributes

client = ContentAPI()

client.object_details("IO", "uuid")
client.object_details("SO", "uuid")

e.g.

from pyPreservica import *

client = ContentAPI()

details = client.object_details("IO", "de1c32a3-bd9f-4843-a5f1-46df080f83d2")
print(details['name'])

or

from pyPreservica import *

client = ContentAPI()

details = client.object_details(EntityType.ASSET, "de1c32a3-bd9f-4843-a5f1-46df080f83d2")
print(details['name'])

47

https://us.preservica.com/api/content/documentation.html

pyPreservica

14.2 indexed-fields

Get a list of all the indexed metadata fields within the Preservica search engine. This includes the default xip.* fields
and any custom indexes which have been created through custom index files.

client = ContentAPI()

client.indexed_fields():

14.3 Search

Search the repository using a single expression which matches on any indexed field.

client = ContentAPI()

client.simple_search_csv()

Searches for everything and writes the results to a csv file called “search.csv”, by default the csv columns contain
reference, title, description, document_type, parent_ref, security_tag.

You can pass the query term as the first argument (% is the wildcard character) and the csv file name as the second
argument.

client = ContentAPI()

client.simple_search_csv("%", "everything.csv")

client.simple_search_csv("Oxford", "oxford.csv")

client.simple_search_csv("History of Oxford", "history.csv")

The last argument is an optional list of indexed fields which are the csv file columns.

client = ContentAPI()

metadata_fields = ["xip.reference", "xip.title", "xip.description", "xip.document_type",
→˓"xip.parent_ref", "xip.security_descriptor"]
client.simple_search_csv("%", "results.csv", metadata_fields)

or to include everything except the full text index value

client = ContentAPI()

everything = list(filter(lambda x: x != "xip.full_text", client.indexed_fields()))
client.simple_search_csv("%", "results.csv", everything)

There is an equivalent call which does not write the output to CSV, but returns a generator of dictionary objects. This
is useful if you want to process the results within the script and not generate a report directly.

client = ContentAPI()

for hit in client.simple_search_list("History of Oxford"):
print(hit)

48 Chapter 14. Content API

pyPreservica

and

client = ContentAPI()

metadata_fields = ["xip.reference", "xip.title", "xip.description", "xip.document_type",
→˓"xip.parent_ref", "xip.security_descriptor"]
for hit in client.simple_search_list("History of Oxford", metadata_fields):

print(hit['xip.title'])

If you want to do searches with advanced filter terms then the following calls can be used. These calls use a Python
dictionary to allow the caller to specify filter values on the indexed terms.

client = ContentAPI()

filters = {"dc.rights": "Public Domain", "xip.security_descriptor": "public"}
for hit in client.search_index_filter_list(query="History of Oxford", filter_
→˓values=filters):

print(hit)

If you want to generate a report which can be opened directly in Excel, the use the csv version.

client = ContentAPI()

filters = {"oai_dc.contributor": "*", "xip.security_descriptor": "public"}
client.search_index_filter_csv(query="History of Oxford", csv_file="my-report.csv",␣
→˓filter_values=filters)

The special filter value “*” is used to filter indexes which have a value, i.e. are values are not empty or missing. The
filter value “%” is used to specify any value including empty values.

For example to create a report on the security tags of all assets within a folder you can use

client = ContentAPI()

filters = {"xip.title": "%", "xip.description": "%", "xip.security_descriptor": "*",
→˓"xip.parent_ref": "48c79abd-01f3-4b77-8132-546a76e0d337"}
client.search_index_filter_csv(query="%", csv_file="security.csv", filter_values=filters)

14.4 Search Progress

Searching across a large Preservica repository is very quick, but returning very large datasets back to the client can be
slow. To avoid putting undue load on the server pyPreservica will request a single page of results at a time for each
server request.

If you are using the `simple_search_csv` or `search_index_filter_csv` functions which write directly to a
csv file then it can be difficult to monitor the report generation progress.

To allow allow monitoring of search result downloads, you can add a callback to the search client. The callback class
will be called for every page of search results returned to the client. The value passed to the callback contains the total
number of search hits for the query and the current number of results processed.

Preservica provides a default callback

14.4. Search Progress 49

pyPreservica

class ReportProgressCallBack:
def __init__(self):

self.current = 0
self.total = 0
self._lock = threading.Lock()

def __call__(self, value):
with self._lock:

values = value.split(":")
self.total = int(values[1])
self.current = int(values[0])
percentage = (self.current / self.total) * 100
sys.stdout.write("\r%s / %s (%.2f%%)" % (self.current, self.total,␣

→˓percentage))
sys.stdout.flush()

To use the default callback in your scripts include the following line

client.search_callback(client.ReportProgressCallBack())

14.5 Reporting Examples

14.5.1 Create a spreadsheet containing all Assets within the repository

Generate a CSV report on all assets within the system, spreadsheet columns include asset title, description, security
tag etc

from pyPreservica import *

client = ContentAPI()

if __name__ == '__main__':
metadata_fields = {

"xip.reference": "*", "xip.title": "", "xip.description": "", "xip.document_type
→˓": "IO", "xip.parent_ref": "",

"xip.security_descriptor": "*",
"xip.identifier": "", "xip.bitstream_names_r_Preservation": ""}

client.search_callback(client.ReportProgressCallBack())

client.search_index_filter_csv("%", "assets.csv", metadata_fields)

50 Chapter 14. Content API

pyPreservica

14.5.2 Create a spreadsheet containing all Assets and Folders within the repository

from pyPreservica import *

client = ContentAPI()

if __name__ == '__main__':
metadata_fields = {

"xip.reference": "*", "xip.title": "", "xip.description": "", "xip.document_type
→˓": "*", "xip.parent_ref": "",

"xip.security_descriptor": "*",
"xip.identifier": "", "xip.bitstream_names_r_Preservation": ""}

client.search_callback(client.ReportProgressCallBack())

client.search_index_filter_csv("%", "all_objects.csv", metadata_fields)

14.5.3 Create a spreadsheet containing all Assets and Folders underneath a spe-
cific folder

from pyPreservica import *

content = ContentAPI()
entity = EntityAPI()

folder = entity.folder(sys.argv[1])

print(f"Searching inside folder {folder.title}")

if __name__ == '__main__':
metadata_fields = {

"xip.reference": "*", "xip.title": "", "xip.description": "", "xip.document_type
→˓": "*", "xip.parent_hierarchy": f"{folder.reference}",

"xip.security_descriptor": "*",
"xip.identifier": "", "xip.bitstream_names_r_Preservation": ""}

content.search_callback(content.ReportProgressCallBack())

content.search_index_filter_csv("%", "assets.csv", metadata_fields)

14.5. Reporting Examples 51

pyPreservica

14.6 User Security Tags

You can get a list of available security tags for the current user by calling:

client = ContentAPI()

client.user_security_tags()

52 Chapter 14. Content API

CHAPTER

FIFTEEN

UPLOAD API

PyPreservica provides some limited capabilities for the Upload Content API

https://developers.preservica.com/api-reference/3-upload-content-s3-compatible

The Upload API can be used for creating, uploading and automatically starting an ingest workflows with pre-created
packages. The Package can be either a native v5 SIP as created from a tool such as the SIP Creator or a native v6
SIP created manually. Zipped OPEX packages are also supported. https://developers.preservica.com/documentation/
open-preservation-exchange-opex

The package can also be a regular zip file containing just folders and files with or without simple .metadata files.

15.1 Uploading Packages

The upload API client is created using

from pyPreservica import *

upload = UploadAPI()

Once you have a client you can use it to upload packages.

upload.upload_zip_package("my-package.zip")

Will upload the local zip file and start an ingest workflow if one is enabled.

The zip file can be any of the following:

• Zipped Native XIPv5 Package (i.e. created from the SIP Creator)

• Zipped Native XIPv6 Package (see below)

• Zipped OPEX Package

• Zipped Folder

Note: A Workflow Context must be active for the package upload requests to be successful.

If the package is a simple zipped folder without a manifest XML then you will want to pass information to the ingest to
specify which folder the content should be ingested into. To specify the parent folder of the ingest pass a folder object
as the second argument.

53

https://developers.preservica.com/api-reference/3-upload-content-s3-compatible
https://developers.preservica.com/documentation/open-preservation-exchange-opex
https://developers.preservica.com/documentation/open-preservation-exchange-opex

pyPreservica

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
upload.upload_zip_package(path_to_zip_package="my-package.zip", folder=folder)

For large packages it is more reliable to send the submission via the AWS S3 transfer bucket connected to a ingest
workflow. The available transfer buckets are shown on the Preservica administration sources tab. The ingest can then
be triggered automatically once the submission is saved to the S3 transfer bucket.

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
bucket = "com.preservica.<Tenent-ID>.upload"
upload.upload_zip_package_to_S3(path_to_zip_package="my-large-package.zip", bucket_
→˓name=bucket, folder=folder)

Note: This upload method is only available to AWS users.

If your Preservica system is deployed on Azure you can use:

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
bucket = "com.preservica.<Tenent-ID>.upload"
upload.upload_zip_package_to_Azure(path_to_zip_package="my-large-package.zip", container_
→˓name=bucket, folder=folder)

If you are writing client code which could be used on both AWS or Azure platforms than you can use the following
which will upload into a monitored cloud location on either platform

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
bucket = "com.preservica.<Tenent-ID>.upload"
upload.upload_zip_to_Source(path_to_zip_package="my-large-package.zip", container_
→˓name=bucket, folder=folder)

15.2 Monitoring Upload Progress

The upload_zip_package function accepts an optional Callback parameter. The parameter references a class that
pyPreservica invokes intermittently during the transfer operation.

pyPreservica executes the class’s __call__ method. For each invocation, the class is passed the number of bytes
transferred up to that point. This information can be used to implement a progress monitor.

The following Callback setting instructs pyPreservica to create an instance of the UploadProgressCallback class. During
the upload, the instance’s __call__ method will be invoked intermittently.

54 Chapter 15. Upload API

pyPreservica

from pyPreservica import UploadProgressCallback
my_callback=UploadProgressCallback("my-package.zip")
client.upload_zip_package(path_to_zip_package="my-package.zip", folder=folder,␣
→˓callback=my_callback)

The default pyPreservica UploadProgressCallback looks like

import os
import sys
import threading

class ProgressPercentage(object):
def __init__(self, filename):

self._filename = filename
self._size = float(os.path.getsize(filename))
self._seen_so_far = 0
self._lock = threading.Lock()

def __call__(self, bytes_amount):
with self._lock:

self._seen_so_far += bytes_amount
percentage = (self._seen_so_far / self._size) * 100
sys.stdout.write("\r%s %s / %s (%.2f%%)" % (self._filename, self._seen_so_

→˓far, self._size, percentage))
sys.stdout.flush()

15.3 Creating Packages

The UploadAPI module also contains functions for creating XIPv6 packages directly from content files.

To create a package containing a single preservation Content Object (file) as part of an Asset which will be a child of
specified folder

package_path = simple_asset_package(preservation_file="my-image.tiff", parent_
→˓folder=folder)

The output is a path to the zip file which can be passed directly to the upload_zip_package method

client.upload_zip_package(path_to_zip_package=package_path)

By default the Asset title and description will be taken from the file name.

If you don’t specify an export folder the new package will be created in the system TEMP folder. If you want to override
this behaviour and explicitly specify the output folder for the package use the export_folder argument

package_path = simple_asset_package(preservation_file="my-image.tiff", parent_
→˓folder=folder,

export_folder="/mnt/export/packages")

You can specify the Asset title and description using additional keyword arguments.

15.3. Creating Packages 55

pyPreservica

package_path = simple_asset_package(preservation_file="my-image.tiff", parent_
→˓folder=folder,

Title="Asset Title", Description="Asset Description")

You can also add a second Access content object to the asset. This will create an asset with two representations
(Preservation & Access)

package_path = simple_asset_package(preservation_file="my-image.tiff", access_file="my-
→˓image.jpg"

parent_folder=folder)

It is possible to configure the asset within the package using the following additional keyword arguments.

• Title Asset Title

• Description Asset Description

• SecurityTag Asset Security Tag

• CustomType Asset Type

• Preservation_Content_Title Content Object Title of the Preservation Object

• Preservation_Content_Description Content Object Description of the Preservation Object

• Access_Content_Title Content Object Title of the Access Object

• Access_Content_Description Content Object Description of the Access Object

• Preservation_Generation_Label Generation Label for the Preservation Object

• Access_Generation_Label Generation Label for the Access Object

• Asset_Metadata Dictionary of metadata schema/documents to add to the Asset

• Identifiers Dictionary of Asset identifiers

• Preservation_files_fixity_callback Fixity generation callback for preservation files

• Access_files_fixity_callback Fixity generation callback for access files

The package will contain an asset with the following structure.

56 Chapter 15. Upload API

pyPreservica

For example to add descriptive metadata and two 3rd party identifiers use the following

metadata = {"http://purl.org/dc/elements/1.1/": "dublin_core.xml"}
identifiers = {"DOI": "doi:10.1038/nphys1170", "ISBN": "978-3-16-148410-0"}
package_path = simple_asset_package(preservation_file="my-image.tiff", access_file="my-
→˓image.jpg"

parent_folder=folder, Asset_Metadata=metadata,␣
→˓Identifiers=identifiers)

More complex assets can also be defined which contain multiple Content Objects, for example a book with multiple
pages etc.

The complex_asset_package function takes a collection of preservation files and an optional collection of access
files. It creates a single asset package with multiple content objects per Representation.

Use a list collection to preserve the ordering of the content objects within the asset. For example the first page of a
book should be the first item added to the list.

preservation_files = list()
preservation_files.append("page-1.tiff")
preservation_files.append("page-2.tiff")
preservation_files.append("page-3.tiff")

access_files = list()
access_files.append("book.pdf")

(continues on next page)

15.3. Creating Packages 57

pyPreservica

(continued from previous page)

package_path = complex_asset_package(preservation_files_list=preservation_files, access_
→˓files_list=access_files,

parent_folder=folder)

15.4 Creating Packages with Multiple Representations

If you have a single preservation and access representation then complex_asset_package will create the package
you need. If you have more than one representation of each type than you need to use generic_asset_package

generic_asset_package can be used to create as many representations as required.

generic_asset_package works the same way as complex_asset_package but instead of a list of content objects
you pass a dictionary, the key is the representation name and the value is the list of files.

preservation_representations = dict()
preservation_representations["Master"] = ["page-1.tiff", "page-2.tiff"," page-3.tiff"]
preservation_representations["BW Master"] = ["page-1.jp2", "page-2.jp2"," page-3.jp2"]
preservation_representations["Greyscale Master"] = ["page-1.tiff", "page-2.tiff"," page-
→˓3.tiff"]

access_representations = dict()
access_representations["Multi-Page Access"] = ["page-1.jpg", "page-2.jpg"," page-3.jpg"]
access_representations["Single Page Access"] = ["book.pdf"]

package_path = generic_asset_package(preservation_files_dict=preservation_
→˓representations, access_files_dict=access_representations, parent_folder=folder)

The additional keyword arguments used by complex_asset_package such as Title, Description etc are still available.

Preservica will render the first access representation, so the viewer you want to use needs to be the first entry in the dict.
For example above if you want to use the multi-page book viewer as the default renderer, make “Multi-Page Access”
the first entry, if you want the PDF viewer to be the default renderer, then make “Single Page Access” the first dict entry.

15.5 Custom Fixity Generation

By default the simple_asset_package and complex_asset_package routines will create packages which contain
SHA1 fixity values.

You can override this default behaviour through the use of the callback options. The pyPreservica library provides
default callbacks for SHA-1, SHA256 & SHA512

• Sha1FixityCallBack

• Sha256FixityCallBack

• Sha512FixityCallBack

To use one of the default callbacks

package_path = complex_asset_package(preservation_files_list=preservation_files, access_
→˓files_list=access_files,

parent_folder=folder, Preservation_files_fixity_
→˓callback=Sha512FixityCallBack())

58 Chapter 15. Upload API

https://en.wikipedia.org/wiki/SHA-1

pyPreservica

If you want to re-use existing externally generated fixity values for performance or integrity reasons then you can create
a custom callback. The callback takes the filename and the path of the file which should have its fixity measured and
should return a tuple containing the algorithm name and fixity value

class MyFixityCallback:
def __call__(self, filename, full_path):
...
...
return "SHA1", value

For example if your fixity values are stored in a spreadsheet (csv) files you may want something similar to:

class CSVFixityCallback:

def __init__(self, csv_file):
self.csv_file = csv_file

def __call__(self, filename, full_path):
with open(self.csv_file, mode='r', encoding='utf-8-sig') as csv_file:

csv_reader = csv.DictReader(csv_file, delimiter=',')
for row in csv_reader:

if row['filename'] == filename
fixity_value = row['file_checksum_sha256']
return "SHA256", fixity_value.lower()

sha = FileHash(hashlib.sha256)
return "SHA256", sha(full_path)

15.6 Bulk Package Creation

The simple_asset_package and complex_asset_package functions create a submission package containing a
single Asset. If you have many single file assets to ingest you can call these functions for each file.

For example, the code fragment below will create a single Asset package for every jpg file in a directory and upload
each package to Preservica.

path = "C:\\Jpeg-Images\\"

images = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith("jpg")]
files = [os.path.join(path, o) for o in images]

for file in files:
package_path = simple_asset_package(preservation_file=file, parent_folder=folder)
client.upload_zip_package(path_to_zip_package=package_path)

This works fine, but this will create a package for each file and an ingest workflow for each file. A more efficient way
is to create a single package which contains multiple assets.

To create a multiple asset package use multi_asset_package, this takes a list of files and creates a package containing
multiple assets which will be ingested into the same folder.

The equivalent to the code above would be:

15.6. Bulk Package Creation 59

pyPreservica

path = "C:\\Jpeg-Images\\"

images = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith("jpg")]
files = [os.path.join(path, o) for o in images]

package_path = multi_asset_package(preservation_file=files, parent_folder=folder)
client.upload_zip_package(path_to_zip_package=package_path)

15.7 Package Examples

The following code samples show different ways of ingesting data into Preservica for different use cases.

15.7.1 Ingest a single digital file as an asset, with a progress bar during upload,
delete the package after upload has completed.

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

image = "./data/file.jpg"

Create a simple package with 1 Asset and Representation and 1 CO
package = simple_asset_package(preservation_file=image, parent_folder=folder)

Send the package via the S3 ingest bucket
use the bucket name attached to the ingest workflow you want to use

bucket = "com.preservica.upload"

callback=UploadProgressCallback(package)

upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket,␣
→˓callback=callback, delete_after_upload=True)

15.7.2 Ingest a single digital file as an asset, with a custom asset Title and Descrip-
tion

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

image = "./data/file.jpg"

(continues on next page)

60 Chapter 15. Upload API

pyPreservica

(continued from previous page)

title = "The Asset Title"
description = "The Asset Description"

Create a simple package with 1 Asset and Representation and 1 CO
package = simple_asset_package(preservation_file=image, parent_folder=folder,␣
→˓Title=title, Description=description)

Send the package via the S3 ingest bucket
use the bucket name attached to the ingest workflow you want to use
bucket = "com.preservica.upload"
callback=UploadProgressCallback(package)
upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket,␣
→˓callback=callback, delete_after_upload=True)

15.7.3 Ingest each jpeg file in a directory as an individual asset

import glob
from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

directory = "./data/*.jpg"

Create simple packages with 1 Asset and 1 CO for every file in the folder
bucket = "com.preservica.upload"
for image in glob.glob(directory):

package = simple_asset_package(preservation_file=image, parent_folder=folder)
upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket)

15.7.4 Ingest a single digital file as an asset with a 3rd party identifier and custom
metadata

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

image = "./data/file.jpg"

Set the Asset Title and Description

title = "My Assst Title"
description = "My Assst Description"

Add 3rd Party Identifiers

(continues on next page)

15.7. Package Examples 61

pyPreservica

(continued from previous page)

identifiers = {"ISBN": "123-4567-938"}

Add Description metadata

metadata = {"https://www.example.com/metadata": "./metadata/dc.xml"}

package = simple_asset_package(preservation_file=image, parent_folder=folder,
Title=title, Description=description,␣

→˓Identifiers=identifiers, Asset_Metadata=metadata)

bucket = "com.preservica.upload"

upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, delete_
→˓after_upload=True)

15.7.5 Create a single Asset with 2 Representations (Preservation and Access) each
Representation has 1 Content Object

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

access_image = "./jpeg/file.jpg"
preservation_image = "./tiff/file.tif"

package = simple_asset_package(preservation_file=preservation_image, access_file=access_
→˓image,

parent_folder=folder)

bucket = "com.preservica.upload"
upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, delete_
→˓after_upload=True)

15.7.6 Create a package with 1 Asset 2 Representations (Preservation and Access)
and multiple Content Objects (one for every image)

import glob
from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

access_images = "./data/*.jpg"
preservation_images = "./data2/*.tif"

(continues on next page)

62 Chapter 15. Upload API

pyPreservica

(continued from previous page)

package = complex_asset_package(preservation_files_list=glob.glob(preservation_images),
access_files_list=glob.glob(access_images),
parent_folder=folder)

bucket = "com.preservica.upload"
upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, delete_
→˓after_upload=True)

15.8 Spreadsheet Metadata

pyPreservica now provides some experimental support for working with metadata in spreadsheets. The library provides
support for generating descriptive metadata XML documents for each row in a spreadsheet, creating an XSD schema
for the XML documents and creating a custom transform for viewing the metadata in the UA portal along side a custom
search index.

Before working with the spreadsheet it should be saved as a UTF-8 CSV document within Excel.

CSV to XML works by extracting each row of a spreadsheet and creating a single XML document for each row. The
spreadsheet columns are the XML attributes.

The XML namespace and root element need to be provided. You also need to specify which column should be used to
name the XML files.

cvs_to_xml(csv_file="my-spreadsheet.csv", root_element="Metadata", file_name_column=
→˓"filename", xml_namespace="https://test.com/Metadata")

This will read the my-spreadsheet.csv csv file and create a set of XML documents, one for each row in the csv file.
The XML files will be named after the value in the filename column.

The resulting XML documents will look like

<?xml version='1.0' encoding='utf-8'?>
<Metadata xmlns="https://test.com/Metadata">

<Column1>....</Column1>
<Column2>....</Column2>

(continues on next page)

15.8. Spreadsheet Metadata 63

pyPreservica

(continued from previous page)

<Column3>....</Column3>
<Column4>....</Column4>

</Metadata>

You can create a XSD schema for the documents by calling

cvs_to_xsd(csv_file="my-spreadsheet.csv", root_element="Metadata", xml_namespace="https:/
→˓/test.com/Metadata")

Which will generate a document Metadata.xsd

<?xml version='1.0' encoding='utf-8'?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified
→˓" elementFormDefault="qualified"

targetNamespace="https://test.com/Metadata">
<xs:element name="Metadata">

<xs:complexType>
<xs:sequence>

<xs:element type="xs:string" name="Column1" />
<xs:element type="xs:string" name="Column2" />
<xs:element type="xs:string" name="Column3" />
<xs:element type="xs:string" name="Column4" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

To display the resulting metadata in the UA portal you will need a CMIS transform to tell Preservica which attributes
to display. You can generate one by calling

cvs_to_cmis_xslt(csv_file="my-spreadsheet.csv", root_element="Metadata", title="My␣
→˓Metadata Title",

xml_namespace="https://test.com/Metadata")

You can also auto-generate a custom search index document which will add indexes for each column in the spreadsheet

csv_to_search_xml(csv_file="my-spreadsheet.csv", root_element="Metadata",
xml_namespace="https://test.com/Metadata")

15.9 Ingest Web Video

pyPreservica now contains the ability to ingest web video directly from video hosting sites such as YouTube and others.
To use this functionality you need to install the additional Python Project youtube_dl

$ pip install --upgrade youtube_dl

You can ingest video’s directly with only the video site URL You also need to tell Preservica which folder the new
video asset will be ingested into.

upload = UploadAPI()
client = EntityAPI()

(continues on next page)

64 Chapter 15. Upload API

pyPreservica

(continued from previous page)

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url="https://www.youtube.com/watch?v=4GCr9gljY7s", parent_
→˓folder=folder):

The new asset will get the title and description from youtube metadata. The asset will be given the default security tag
of “open”.

The video is downloaded from the web hosting platform to the local client running the Python script and then uploaded
to Preservica.

It will work with most sites that host video, for example using c-span.

upload = UploadAPI()
client = EntityAPI()

cspan_url = "https://www.c-span.org/video/?508691-1/ceremonial-swearing-democratic-
→˓senator-padilla"
folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url=cspan_url, parent_folder=folder):

or UK parliament

upload = UploadAPI()
client = EntityAPI()

uk_url = "https://parliamentlive.tv/event/index/b886f44b-0e65-47bc-b506-d0e805c01f4b"
folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url=uk_url, parent_folder=folder):

The asset will automatically have a title and description pulled from the original site.

You can override the default title, description and security tag with optional arguments and add 3rd party identifiers.

upload = UploadAPI()
client = EntityAPI()

identifier_map = {"Type": "youtube.com"}

url = "https://www.youtube.com/watch?v=4GCr9gljY7s"
title = "Preservica Cloud Edition: Keeping your digital assets safe and accessible"

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url=url, parent_folder=folder, Identifiers=identifier_dict,␣
→˓Title=title, SecurityTag="public")

15.9. Ingest Web Video 65

pyPreservica

15.10 Ingest Twitter Feeds

To use this functionality you need to install the additional Python Project tweepy

$ pip install --upgrade tweepy

The Twitter API is authenticated, this means that unlike youtube you need a set of API credentials to read tweets even
if the tweets are public and you have a twitter account.

You can apply for API Consumer Keys (The basic ready only set is required) at:

https://developer.twitter.com/

You will need the consumer key and secret. Your twitter API keys and tokens should be guarded very carefully.

Note: Twitter no longer provides free API read access. See: https://developer.twitter.com/

You can harvest and ingest tweets using a single call on the upload class using ingest_twitter_feed method.

You should pass the name of the twitter feed you want to crawl and the number of tweets as the first two arguments.
You also need to tell the call which folder you want the tweet assets to be ingested into.

The twitter API Consumer Keys can either be passed as arguments to the call or be specified in the credential.properties
file or an environment variable using the keys: TWITTER_CONSUMER_KEY and TWITTER_SECRET_KEY

upload = UploadAPI()

twitter_name = "Preservica"
number_tweets = 25
folder_id = "77802d22-ee48-4e46-9b29-46118246cad1"
folder = entity.folder(folder_id)

upload.ingest_twitter_feed(twitter_user=twitter_name, num_tweets=number_tweets,␣
→˓folder=folder, twitter_consumer_key="xxxx", twitter_secret_key="zzzz")

15.11 Crawl and ingest from a filesystem

The UploadAPI class provides a mechanism for users to crawl and ingest all digital files on a filesystem. The crawl will
replicate the on disk folder structure in Preservica.

You provide the function the path to the data to be ingested, an bucket connected to an ingest workflow and the Preservica
collection to ingest into.

upload = UploadAPI()

upload.crawl_filesystem(filesystem_path="/my/path/data", bucket_name="com.bucket",
preservica_parent="daa88307-4a0b-4962-a5a9-6a1387f9f876")

66 Chapter 15. Upload API

https://developer.twitter.com/
https://developer.twitter.com/

CHAPTER

SIXTEEN

WORKFLOW API

The workflow API allows clients to interact with the workflow engine, you can start workflows programmatically and
monitor the workflow queue etc.

Note: The Workflow API is available for Enterprise Preservica users only

Begin by importing the pyPreservica module

from pyPreservica import *

Now, create the WorkflowAPI client

client = WorkflowAPI()

16.1 Fetching Workflow Contexts

The WorkflowAPI allows users to fetch a list of workflow contexts. A workflow context is a workflow definition which
has been configured and is ready to run. Workflow contexts will appear in the “Manage” tab in the admin interface
under the workflow type.

To fetch list of all workflow contexts by the workflow definition identifier

for workflow_context in client.get_workflow_contexts("com.preservica.core.workflow.ingest
→˓"):

print(workflow_context.workflow_name)

To fetch a list of all workflow contexts by type:

The list of available types are:

• Ingest

• Access

• Transformation

• DataManagement

for workflow_context in client.get_workflow_contexts_by_type("Ingest"):
print(workflow_context.workflow_name)

67

pyPreservica

16.2 Fetching Workflow Instances

A workflow instance is a workflow context which has been started and has either completed or is in progress.

Return a workflow instance by its identifier

workflow_instance = client.workflow_instance(instance_id)
print(workflow_instance.workflow_context_name)
print(workflow_instance.display_state)

Return a list of all Workflow instances, you can filter on workflow state and workflow type

Workflow States

• Aborted

• Active

• Completed

• Finished_Mixed_Outcome

• Pending

• Suspended

• Unknown

• Failed

Workflow Types

• Ingest

• Access

• Transformation

• DataManagement

for workflow_instance in client.workflow_instances("Completed", "Ingest"):
print(workflow_instance)

16.3 Starting Workflows

Once you have a workflow context setup, you can start workflows via the API.

To start the workflow pass a workflow context object as the argument

client.start_workflow_instance(workflow_context)

If a workflow requires additional arguments or you would like to override the defaults, you can pass additional named
arguments as additional parameters.

For example, to automatically start a new web crawl workflow, overriding some of the default parameters you would
use:

68 Chapter 16. Workflow API

pyPreservica

workflow_context = client.get_workflow_contexts("com.preservica.core.workflow.web.crawl.
→˓and.ingest")[0]

client.start_workflow_instance(workflow_context, seedUrl="preservica.com", maxDepth="8",␣
→˓maxHops="10")

16.3. Starting Workflows 69

pyPreservica

70 Chapter 16. Workflow API

CHAPTER

SEVENTEEN

ADMIN API

pyPreservica 1.2 onwards now provides interfaces to the Administration and Management API

https://eu.preservica.com/api/admin/documentation.html

Note: Administration and Management API is a system management API for repository managers who have at least
the role ROLE_SDB_MANAGER_USER

The Administration and Management API client is created using

from pyPreservica import *

client = AdminAPI()

17.1 Metadata Management (XSD Schema’s, XML Documents & XSLT
Transforms)

Preservica holds XML metadata schema’s, XML templates and XSLT transforms, you can access the document stores
programmatically via the admin API.

To list all the XML templates use

from pyPreservica import *

client = AdminAPI()

client.xml_documents()

This will return a list of dictionary objects containing the template attributes, e.g.

from pyPreservica import *

client = AdminAPI()

for doc in client.xml_documents():
print(doc['Name'])

You can access the XSD schema and XSLT templates in the same way

71

https://eu.preservica.com/api/admin/documentation.html

pyPreservica

from pyPreservica import *

client = AdminAPI()

for schema in client.xml_schemas():
print(schema['Name'])

from pyPreservica import *

client = AdminAPI()

for transform in client.xml_transforms():
print(transform['Name'])

Individual xml documents can be requested via their namespace URI.

For example, to save a MODS xml template held in Preservica with a given URI to a local file, use:

from pyPreservica import *

client = AdminAPI()

with open("mods-template.xml", encoding="utf-8", mode="wt") as f:
f.write(client.xml_document("http://www.loc.gov/mods/v3"))

This now allows you to fetch a template from Preservica, update it and add it to a submission.

admin = AdminAPI()

dublin_core_template = admin.xml_document("http://www.openarchives.org/OAI/2.0/oai_dc/")
entity_response = xml.etree.ElementTree.fromstring(dublin_core_template)
entity_response.find(".//{http://purl.org/dc/elements/1.1/}title").text = "My Asset Title
→˓"
dublin_core_metadata = xml.etree.ElementTree.tostring(entity_response).decode("utf-8")

package = simple_asset_package(preservation_file="my-image.tiff",
Asset_Metadata={"http://www.openarchives.org/OAI/2.0/oai_

→˓dc/", dublin_core_metadata})

You can use similar code to fetch the XSD schema documents

from pyPreservica import *

client = AdminAPI()

with open("dublin-core.xsd", encoding="utf-8", mode="wt") as f:
f.write(client.xml_schema("http://purl.org/dc/elements/1.1/"))

To fetch a transform you need to provide both an input URI and output URI

from pyPreservica import *

client = AdminAPI()

(continues on next page)

72 Chapter 17. Admin API

pyPreservica

(continued from previous page)

with open("ead-cmis.xslt", encoding="utf-8", mode="wt") as f:
f.write(client.xml_transform("urn:isbn:1-931666-22-9", "http://www.w3.org/1999/xhtml

→˓"))

To add a new XML descriptive metadata template you can either pass an XML document held as a string or a file like
object. If using a file, then make sure the file descriptor is opened in binary mode.

from pyPreservica import *

client = AdminAPI()

with open("my-template.xml", mode="rb") as f:
f.write(client.add_xml_document("my-template-name", f))

or via a string

from pyPreservica import *

client = AdminAPI()

client.add_xml_document("my-template-name", xml_document)

To delete an existing XML template use the URI identifier

from pyPreservica import *

client = AdminAPI()

client.delete_xml_document("http://purl.org/dc/elements/1.1/")

XSD Schema’s and XSLT Transforms can be added and deleted in a similar way

Using a file like object

from pyPreservica import *

client = AdminAPI()

with open("my-schema.xsd", mode="rb") as f:
f.write(client.add_xml_schema(name="my-schema", description="", originalName="my-

→˓schema.xsd", f))

or via a string

from pyPreservica import *

client = AdminAPI()

client.add_xml_schema(name="my-schema", description="", originalName="my-schema.xsd",␣
→˓xml_document)

and deletion is via the URI

17.1. Metadata Management (XSD Schema’s, XML Documents & XSLT Transforms) 73

pyPreservica

from pyPreservica import *

client = AdminAPI()

client.delete_xml_schema("http://purl.org/dc/elements/1.1/")

17.2 User Management

List all the users within the tenancy by their username

from pyPreservica import *

client = AdminAPI()

for username in client.all_users():
print(username)

Fetch the full set of user details, such as full name, email address and roles

from pyPreservica import *

client = AdminAPI()

user = client.user_details(username):
print(user['FullName'])
print(user['Email'])

Create a CSV/Spreadsheet report containing details of all users within the tenancy, the report has the following columns,
UserName, FullName, Email, Tenant, Enabled, Roles

from pyPreservica import *

client = AdminAPI()

client.user_report(report_name="users.csv")

Create new user accounts

from pyPreservica import *

client = AdminAPI()

username = "admin@example.com"
roles = ['SDB_MANAGER_USER', 'SDB_INGEST_USER']

user = client.add_user(username, full_name, roles)

Delete a user from the system

from pyPreservica import *

(continues on next page)

74 Chapter 17. Admin API

pyPreservica

(continued from previous page)

client = AdminAPI()

client.delete_user(username)

Change the display name of a user

from pyPreservica import *

client = AdminAPI()

client.change_user_display_name(username, "New Display Name")

17.3 Security Tags

To get a list of all security tags in the system use:

from pyPreservica import *

client = AdminAPI()

tags = client.security_tags()

Note: This call may produce a different set of tags than the user_security_tags() function from the content API
which only returns security tags that the current user has available.

You can generate a report of security tag frequency usage using the pygal library for example.

import pygal
from pygal.style import BlueStyle
from pyPreservica import *

client = AdminAPI()
search = ContentAPI()
security_tags = client.security_tags()
results = {}
for tag in security_tags:

filters = {"xip.security_descriptor": tag, "xip.document_type": "IO"}
hits = search.search_index_filter_hits(query="%", filter_values=filters)
results[tag] = hits

bar_chart = pygal.HorizontalBar(show_legend=False)
bar_chart.title = "Security Tag Frequency"
bar_chart.style = BlueStyle
bar_chart.x_title = "Number of Assets"
bar_chart.x_labels = results.keys()
bar_chart.add("Security Tag", results)

bar_chart.render_to_file("chart.svg")

17.3. Security Tags 75

pyPreservica

This creates a graphical report which displays the frequency of each security tag with the ability to hover over the
values.

The following calls are only available against a 6.4.x Preservica system.

To add a new security tag

from pyPreservica import *

client = AdminAPI()

tags = client.add_security_tag("my new tag")

and to delete a tag

from pyPreservica import *

client = AdminAPI()

tags = client.delete_security_tag("my new tag")

76 Chapter 17. Admin API

CHAPTER

EIGHTEEN

RETENTION API

https://eu.preservica.com/api/entity/documentation.html#/%2Fretention-policies

18.1 Retention Policies

Fetch a list of all retention policies

retention = RetentionAPI()

for policy in retention.policies():
print(policy)

Fetch a retention policy by its name

retention = RetentionAPI()

policy = retention.policy_by_name("Standard Policy")

Create a new retention policy

retention = RetentionAPI()

args = dict()
args['Name'] = "API Created Policy"
args['Description'] = "Policy Description"
args['SecurityTag'] = "open"
args['StartDateField'] = "xip.created"
args['Period'] = "6"
args['PeriodUnit'] = "YEAR"
args['ExpiryAction'] = "REVIEW"
args['ExpiryActionParameters'] = "{\"EmailAddress\":[\"test@emailaddress1.com\",\
→˓"test@emailaddress2.com\"]}"
args['Restriction'] = "DELETE"
args['Assignable'] = bool(True)

policy = retention.create_policy(**args)

Delete a Policy

77

https://eu.preservica.com/api/entity/documentation.html#/%2Fretention-policies

pyPreservica

retention = RetentionAPI()

retention.delete_policy(policy.reference)

18.2 Retention Assignments

Assign a policy onto an asset

client = EntityAPI()
retention = RetentionAPI()

asset = client.asset("c365634e-9fcc-4ea1-b47f-077f55df9d64")

policy = retention.policy_by_name("Standard Policy")

retention_assignment = retention.add_assignments(asset, policy)

List the retention assignments on a asset

client = EntityAPI()
retention = RetentionAPI()

asset = client.asset("c365634e-9fcc-4ea1-b47f-077f55df9d64")

assignments = retention.assignments(asset)

Remove a policy assignment from an asset

client = EntityAPI()
retention = RetentionAPI()

retention_assignment = retention.remove_assignments(assignment)

78 Chapter 18. Retention API

CHAPTER

NINETEEN

REGISTRY API

PyPreservica provides a python interface for using the Preservation Action Registry API

https://demo.preservica.com/Registry/par/documentation.html

For more information on PAR see: https://parcore.org/

This pyPreservica PAR client will work with any PAR implementation which uses HTTP Basic Auth.

19.1 Non-Authenticated Read Access

The interfaces for reading information from the PAR are non-authenticated calls. Only a server address is required. All
the interfaces for reading information return JSON documents.

The JSON documents can be converted into Python Dictionaries using the standard json library.

• Format Families

import json

par = PreservationActionRegistry(server="par-server.com")
json_document = par.format_families()
dict_obj = json.loads(json_document)

json_document = par.format_family('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• Preservation Action Types

par = PreservationActionRegistry(server="par-server.com")
json_document = par.preservation_action_types()
dict_obj = json.loads(json_document)

json_document = par.preservation_action_type('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• Properties

par = PreservationActionRegistry(server="par-server.com")
json_document = par.properties()
dict_obj = json.loads(json_document)

(continues on next page)

79

https://demo.preservica.com/Registry/par/documentation.html
https://parcore.org/

pyPreservica

(continued from previous page)

json_document = par.property('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• Representation Formats

par = PreservationActionRegistry(server="par-server.com")
json_document = par.representation_format()
dict_obj = json.loads(json_document)

json_document = par.representation_formats('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• File Formats

par = PreservationActionRegistry(server="par-server.com")
json_document = par.file_formats()
dict_obj = json.loads(json_document)

json_document = par.file_format('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• Tools

par = PreservationActionRegistry(server="par-server.com")
json_document = par.tools()
dict_obj = json.loads(json_document)

json_document = par.tool('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• Preservation Action

par = PreservationActionRegistry(server="par-server.com")
json_document = par.preservation_actions()
dict_obj = json.loads(json_document)

json_document = par.preservation_action('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• Business Rules

par = PreservationActionRegistry(server="par-server.com")
json_document = par.business_rules()
dict_obj = json.loads(json_document)

json_document = par.business_rule('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

• Rule Sets

80 Chapter 19. Registry API

pyPreservica

par = PreservationActionRegistry(server="par-server.com")
json_document = par.rule_sets()
dict_obj = json.loads(json_document)

json_document = par.rule_set('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

19.1. Non-Authenticated Read Access 81

pyPreservica

82 Chapter 19. Registry API

CHAPTER

TWENTY

MONITOR API

This is an API for monitoring certain types of long running process within Preservica, for example OPEX ingests.

You can find Swagger UI for this API at https://us.preservica.com/api/processmonitor/documentation.html

20.1 Monitors

Returns a generator of monitors. The ID returned for each monitor can be used as an ID parameter in other endpoints.
These IDs might change between releases, so you should not persist them as permanent object links. Filters are additive,
e.g. if both category and status filters are applied then only processes matching both category and status will be included.

This call returns a Generator which can be used to enumerate over all the monitor objects. The result is a monitor
object which is dictionary created from the returned json.

client = MonitorAPI()

for monitor in client.monitors():
print(monitor)

Filters can be applied to limit the returned data, for example:

client = MonitorAPI()

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.
→˓SUCCEEDED):

print(monitor)

20.2 Messages

Returns a generator of process messages for each Monitor.

client = MonitorAPI()

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.
→˓SUCCEEDED):

print(monitor)
for message in client.messages(monitor['MonitorId']):

print(message)

Messages can be filtered

83

https://us.preservica.com/api/processmonitor/documentation.html

pyPreservica

client = MonitorAPI()

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.
→˓SUCCEEDED):

print(monitor)
for message in client.messages(monitor['MonitorId'], status=MessageStatus.ERROR):

print(message)

20.3 Monitor Timeseries

Get the historical record of progress for a single monitor.

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.
→˓RUNNING):

print(monitor)
for series in client.timeseries(monitor['MonitorId']):

print(series)

84 Chapter 20. Monitor API

CHAPTER

TWENTYONE

WEBHOOK API

pyPreservica now contains APIs for accessing the web hook API.

Webhooks are “user-defined HTTP callbacks”. They are triggered by some Preservica event, such as ingesting objects
into the repository. When that event occurs, Preservica makes an HTTP request to the URL configured for the webhook.

Unlike the traditional process of “polling” in which a client asks the repository if anything has changed, web hooks
automatically send out information to subscribed systems when certain events have happened.

To receive web hook notifications the 3rd party application requires a web server which can process HTTP POST
requests.

To authenticate messages from Preservica to prevent spoofing attacks, the messages are verified through the use of a
shared secret key.

The Webhook API requires the user to have at least the repository manager role, ROLE_SDB_MANAGER_USER

21.1 Subscribing

Before a system can receive notifications from Preservica, it must subscribe to a notification trigger.

Preservica currently supports three different triggers, “MOVED”, “SECURITY_CHANGED” and “INDEXED”.

The “Indexed” notification is sent after an object has been ingested and the full text index has been extracted, at this
point the thumbnail and search contents are available.

When creating a new subscription service you need to generate a shared secret key and pass it as an argument to the
subscribe method. This is used to verify the web service which will receive the web hooks.

The URL must be a publicly addressable web server.

webhook = WebHooksAPI()

webhook.subscribe("http://my-webhook-server.com:8080/", TriggerType.INDEXED, "my_shared_
→˓secret")

The given URL host will need to respond to a validation challenge during the subscription request. Preservica will
make a POST request to the URL with a challengeCode query parameter. The receiver must respond with the expected
challenge response or the subscription will fail. The challenge response must take the form:

{
"challengeCode": "challengeCode",
"challengeResponse": "hexHmac256Response"

}

85

pyPreservica

where hexHmac256Response is a hex hmac256 of the challengeCode using the shared secret as the hmac key.

If the web server is unable to correctly verify the subscription then an exception is thrown.

21.2 Listing Subscriptions

You can query the system for a list of current subscriptions for a tenancy.

webhook = WebHooksAPI()

json_doc = webhook.subscriptions()

print(json_doc)

21.3 Unsubscribe

To unsubscribe to a web hook, you need the subscription id

webhook = WebHooksAPI()

webhook.unsubscribe("c306c99ca3a736124fa711bec53c737d")

To unsubscribe to all web hooks use

webhook = WebHooksAPI()

webhook.unsubscribe_all()

21.4 Reference Web Server

To receive web hook notifications pyPreservica has provided a reference web server implementation which provides
support for negotiation of the challenge request handshake during the subscription request and verification of each
webhook event request.

To implement the web server, extend the base class WebHookHandler and implement a single method do_WORK() this
method is called everytime Preservica calls the web hook. This method is therefore where any processing takes place.
For example updating a catalogue system etc.

class MyWebHook(WebHookHandler):
def do_WORK(self, json_payload):
"""
Process the event
"""

The handler can then be used to create a web server, the web server should be run from the same directory as a
credential.properties file containing the shared secret which was used to create the web hook subscription.

[credentials]
secret.key=my_shared_secret

86 Chapter 21. WebHook API

pyPreservica

For example a simple web hook server which prints the events to the console as they arrive would be:

from http.server import HTTPServer
from sys import argv
from pyPreservica import *

class MyWebHook(WebHookHandler):
def do_WORK(self, json_payload):

print(json_payload)

if __name__ == '__main__':

config = configparser.ConfigParser(interpolation=configparser.
→˓Interpolation())

config.read('credentials.properties', encoding='utf-8')
secret_key = config['credentials']['secret.key']

if len(argv) > 1:
arg = argv[1].split(':')
BIND_HOST = arg[0]
PORT = int(arg[1])

print(f'Listening on http://{BIND_HOST}:{PORT}\n')

httpd = HTTPServer((BIND_HOST, PORT), MyWebHook)
httpd.secret_key = secret_key
httpd.serve_forever()

The web server would then be started using:

$ python3 server.py 0.0.0.0:8000

A more interesting web hook handler might be one which downloads the thumbnail image from each Asset as it is
ingested using the pyPreservica EntityAPI()

class MyWebHook(WebHookHandler):
def do_WORK(self, json_payload):

client = EntityAPI()
for reference in list(json_payload['events']):

ref = reference['entityRef']
asset = client.asset(ref)
client.thumbnail(asset, f"{ref}.jpg")

21.4. Reference Web Server 87

pyPreservica

88 Chapter 21. WebHook API

CHAPTER

TWENTYTWO

AUTHORITY RECORDS API

This API is used for managing the controlled vocabulary (Authority) records within Preservica.

Controlled vocabularies within Preservica are tables of records which can be linked to specific metadata attributes.
Each table can consist of multiple records and each record has multiple fields.

22.1 Authority Tables

Fetch a list of all Authority tables

authority = AuthorityAPI()

for table in authority.tables():
print(table)

Get a single Authority table by its reference

authority = AuthorityAPI()

table = authority.table(ref):

89

pyPreservica

22.2 Authority Records

Fetch a record by its reference

authority = AuthorityAPI()

record = authority.record(reference)

Fetch all records from a table

authority = AuthorityAPI()

table = authority.table(ref):

for record in authority.records(table):
print(record)

Add a new authority record to an existing table, the record is a Python dictionary object

authority = AuthorityAPI()

table = authority.table(ref):

record = {"id": "6", "Code": "BE", "Latitude": "50.503887", "Longitude": "4.469936",
→˓"Name": "Belgium"}

authority.add_record(table, record)

Adding records from a CSV document

authority = AuthorityAPI()

table = authority.table(ref):

authority.add_records(table, "countries.csv")

If the CSV document was saved from a MS Excel workbook, then the encoding should be set to utf-8-sig

authority = AuthorityAPI()

table = authority.table(ref):

authority.add_records(table, "countries.csv", encoding="utf-8-sig")

Deleting Records from a table by its reference

authority = AuthorityAPI()

table = authority.table(ref):

authority.delete_record(table, reference)

To delete all records from a table

90 Chapter 22. Authority Records API

pyPreservica

authority = AuthorityAPI()

table = authority.table(ref):

for record in authority.records(table):
authority.delete_record(table, record['ref'])

22.2. Authority Records 91

pyPreservica

92 Chapter 22. Authority Records API

CHAPTER

TWENTYTHREE

EXAMPLE APPLICATIONS

Updating a descriptive metadata element value

If you need to bulk update metadata values the following script will check every asset in a folder given by the “folder-
uuid” and find the matching descriptive metadata document by its namespace “your-xml-namespace”. It will then find
a particular element in the xml document “your-element-name” and update its value.

from xml.etree import ElementTree
from pyPreservica import *
client = EntityAPI()
folder = client.folder("folder-uuid")
next_page = None
while True:

children = client.children(folder.reference, maximum=10, next_page=next_page)
for entity in children.results:

if entity.entity_type is EntityAPI.EntityType.ASSET:
asset = client.asset(entity.reference)
for url, schema in asset.metadata.items():

if schema == "your-xml-namespace":
xml_document = ElementTree.fromstring(client.metadata(url))
field_with_error = xml_document.find('.//{your-xml-namespace}your-

→˓element-name')
if hasattr(field_with_error, 'text'):

if field_with_error.text == "Old Value":
field_with_error.text = "New Value"
asset = client.update_metadata(asset, schema, ElementTree.

→˓tostring(xml_document, encoding='UTF-8', xml_declaration=True).decode("utf-8"))
print("Updated asset: " + asset.title)

if not children.has_more:
break

else:
next_page = children.next_page

The following script does the same thing as above but uses the function descendants() rather than children(). The
difference is that descendants() does the paging of results internally and combined with a filter() on the lazy iterator
provides a version which does not need the additional while loop or if statement!

client = EntityAPI()
folder = client.folder("folder-uuid")
for child_asset in filter(only_assets, client.descendants(folder.reference)):

asset = client.asset(child_asset.reference)
document = ElementTree.fromstring(client.metadata_for_entity(asset, "your-xml-

(continues on next page)

93

pyPreservica

(continued from previous page)

→˓namespace"))
field_with_error = document.find('.//{your-xml-namespace}your-element-name')
if hasattr(field_with_error, 'text'):

if field_with_error.text == "Old Value":
field_with_error.text = "New Value"
new_xml = ElementTree.tostring(document, encoding='UTF-8', xml_

→˓declaration=True).decode("utf-8")
asset = client.update_metadata(asset, "your-xml-namespace", new_xml)
print("Updated asset: " + asset.title)

Adding Metadata from a Spreadsheet

One common use case which can be solved with pyPreservica is adding descriptive metadata to existing Preservica
assets or folders using metadata held in a spreadsheet. Normally each column in the spreadsheet contains a metadata
attribute and each row represents a different asset.

The following is a short python script which uses pyPreservica to update assets within Preservica with Dublin Core
Metadata held in a spreadsheet.

The spreadsheet should contain a header row. The column name in the header row should start with the text “dc:” to
be included. There should be one column called “assetId” which contains the reference id for the asset to be updated.

The metadata should be saved as a UTF-8 CSV file called dublincore.csv

import xml
import csv
from pyPreservica import *

OAI_DC = "http://www.openarchives.org/OAI/2.0/oai_dc/"
DC = "http://purl.org/dc/elements/1.1/"
XSI = "http://www.w3.org/2001/XMLSchema-instance"

entity = EntityAPI()

headers = list()
with open('dublincore.csv', encoding='utf-8-sig', newline='') as csvfile:

reader = csv.reader(csvfile)
for row in reader:

for header in row:
headers.append(header)

break
if 'assetId' in headers:

for row in reader:
assetID = None
xml_object = xml.etree.ElementTree.Element('oai_dc:dc', {"xmlns:oai_dc": OAI_

→˓DC, "xmlns:dc": DC, "xmlns:xsi": XSI})
for value, header in zip(row, headers):

if header.startswith('dc:'):
xml.etree.ElementTree.SubElement(xml_object, header).text = value

elif header.startswith('assetId'):
assetID = value

xml_request = xml.etree.ElementTree.tostring(xml_object, encoding='utf-8',␣
→˓xml_declaration=True).decode('utf-8')

asset = entity.asset(assetID)
(continues on next page)

94 Chapter 23. Example Applications

pyPreservica

(continued from previous page)

entity.add_metadata(asset, OAI_DC, xml_request)
else:

print("The CSV file should contain a assetId column containing the Preservica␣
→˓identifier for the asset to be updated")

Creating Searchable Transcripts from Oral Histories

The following is an example python script which uses a 3rd party Machine Learning API to automatically generate
a text transcript from an audio file such as a WAVE file. The transcript is then uploaded to Preservica, is stored as
metadata attached to an asset and indexed so that the audio or oral history is searchable.

This example uses the AWS https://aws.amazon.com/transcribe/ service, but other AI APIs are also available. AWS
provides a free tier https://aws.amazon.com/free/ to allow you to try the service for no cost.

This python script does require a set of AWS credentials to use the AWS transcribe service.

The python script downloads a WAV file using its reference, uploads it to AWS S3 and then starts the transcription
service, when the transcript is available it creates a metadata document containing the text and uploads it to Preservica.:

import os,time,uuid,xml,boto3,requests
from pyPreservica import *

BUCKET = "com.my.transcribe.bucket"
AWS_KEY = '.....'
AWS_SECRET = '........'
REGION = 'eu-west-1'
download the file to the local machine
client = EntityAPI()
asset = client.asset('91c73c95-a298-448c-a5a3-2295e5052be3')
client.download(asset, f"{asset.reference}.wav")
upload the file to AWS
s3_client = boto3.client('s3', region_name=REGION, aws_access_key_id=AWS_KEY, aws_secret_
→˓access_key=AWS_SECRET)
response = s3_client.upload_file(f"{asset.reference}.wav", BUCKET, f"{asset.reference}")
Start the transcription service
transcribe = boto3.client('transcribe', region_name=REGION, aws_access_key_id=KEY, aws_
→˓secret_access_key=SECRET)
job_name = str(uuid.uuid4())
job_uri = f"https://s3-{REGION}.amazonaws.com/{BUCKET}/{asset.reference}"
transcribe.start_transcription_job(TranscriptionJobName=job_name, Media={'MediaFileUri
→˓': job_uri}, MediaFormat='wav', LanguageCode='en-US')
while True:

status = transcribe.get_transcription_job(TranscriptionJobName=job_name)
if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:

break
print("Still working on the transcription....")
time.sleep(5)

upload the transcript text to Preservica
if status['TranscriptionJob']['TranscriptionJobStatus'] == 'COMPLETED':

result_url = status['TranscriptionJob']['Transcript']['TranscriptFileUri']
json = requests.get(result_url).json()
text = json['results']['transcripts'][0]['transcript']
xml_object = xml.etree.ElementTree.Element('tns:Transcript', {"xmlns:tns": "https://

→˓aws.amazon.com/transcribe/"})
(continues on next page)

95

https://aws.amazon.com/transcribe/
https://aws.amazon.com/free/

pyPreservica

(continued from previous page)

xml.etree.ElementTree.SubElement(xml_object, "Transcription").text = text
xml_request = xml.etree.ElementTree.tostring(xml_object, encoding='utf-8', xml_

→˓declaration=True).decode('utf-8')
client.add_metadata(asset, "https://aws.amazon.com/transcribe/", xml_request) #␣

→˓add the xml transcript
s3_client.delete_object(Bucket=BUCKET, Key=asset.reference) # delete the temp file␣

→˓from s3
os.remove(f"{asset.reference}.wav") # delete the local copy

96 Chapter 23. Example Applications

CHAPTER

TWENTYFOUR

DEVELOPER INTERFACE

24.1 Entity API

This part of the documentation covers all the interfaces of pyPreservica EntityAPI object.

class pyPreservica.EntityAPI(username: str | None = None, password: str | None = None, tenant: str | None
= None, server: str | None = None, use_shared_secret: bool = False,
two_fa_secret_key: str | None = None, protocol: str = 'https')

A class for the Preservica Repository web services Entity API

https://us.preservica.com/api/entity/documentation.html

The EntityAPI allows users to interact with the Preservica repository

asset(reference)
Returns an asset object back by its internal reference identifier

Parameters
reference (str) – The unique identifier for the asset usually its uuid

Returns
The Asset object

Return type
Asset

Raises
RuntimeError – if the identifier is incorrect

folder(reference)
Returns a folder object back by its internal reference identifier

Parameters
reference (str) – The unique identifier for the asset usually its uuid

Returns
The Folder object

Return type
Folder

Raises
RuntimeError – if the identifier is incorrect

content_object(reference)
Returns a content object back by its internal reference identifier

97

https://us.preservica.com/api/entity/documentation.html

pyPreservica

Parameters
reference (str) – The unique identifier for the asset usually its uuid

Returns
The content object

Return type
ContentObject

Raises
RuntimeError – if the identifier is incorrect

entity(entity_type, reference)
Returns an generic entity based on its reference identifier

Parameters

• entity_type (EntityType) – The type of entity

• reference (str) – The unique identifier for the entity

Returns
The entity either Asset, Folder or ContentObject

Return type
Entity

Raises
RuntimeError – if the identifier is incorrect

save(entity)
Updates the title and description of an entity The security tag and parent are not saved via this method call

Parameters
entity (Entity) – The entity (asset, folder, content_object) to be updated

Returns
The updated entity

Return type
Entity

security_tag_async(entity, new_tag)
Change the security tag of an asset or folder This is a non blocking call which returns immediately.

Parameters

• entity (Entity) – The entity (asset, folder) to be updated

• new_tag (str) – The new security tag to be set on the entity

Returns
A progress id which can be used to monitor the workflow

Return type
str

security_tag_sync(entity, new_tag)
Change the security tag of an asset or folder This is a blocking call which returns after all entities have been
updated.

Parameters

• entity (Entity) – The entity (asset, folder) to be updated

98 Chapter 24. Developer Interface

pyPreservica

• new_tag (str) – The new security tag to be set on the entity

Returns
The updated entity

Return type
Entity

create_folder(title, description, security_tag, parent=None)
Create a new folder in the repository below the specified parent folder. If parent is missing or None then a
root level folder is created.

Parameters

• title (str) – The title of the new folder

• description (str) – The description of the new folder

• security_tag (str) – The security tag of the new folder

• parent (str) – The identifier for the parent folder

Returns
The new folder object

Return type
Folder

representations(asset)
Return a set of representations for the asset

Representations are used to define how the information object are composed in terms of technology and
structure.

Parameters
asset (Asset) – The asset containing the required representations

Returns
Set of Representation objects

Return type
set(Representation)

content_objects(representation)
Return a list of content objects for a representation

Parameters
representation (Representation) – The representation

Returns
List of content objects

Return type
list(ContentObject)

generations(content_object)
Return a list of Generation objects for a content object

Parameters
content_object (ContentObject) – The content object

Returns
list of generations

24.1. Entity API 99

pyPreservica

Return type
list(Generation)

bitstream_content(bitstream, filename)
Downloads the bitstream object to a local file

Parameters

• bitstream (Bitstream) – The content object

• filename (str) – The name of the file the bytes are written to

Returns
the number of bytes written

Return type
int

identifiers_for_entity(entity)
Return a set of identifiers which belong to the entity

Parameters
entity (Entity) – The entity

Returns
Set of identifiers as tuples

Return type
set(Tuple)

identifier(identifier_type, identifier_value)
Return a set of entities with external identifiers which match the type and value

Parameters

• identifier_type (str) – The identifier type

• identifier_value (str) – The identifier value

Returns
Set of entity objects which have a reference and title attribute

Return type
set(Entity)

add_identifier(entity, identifier_type, identifier_value)
Add a new external identifier to an Entity object

Parameters

• entity (Entity) – The entity the identifier is added to

• identifier_type (str) – The identifier type

• identifier_value (str) – The identifier value

Returns
An internal id for this external identifier

Return type
str

100 Chapter 24. Developer Interface

pyPreservica

delete_identifiers(entity, identifier_type=None, identifier_value=None)
Delete identifiers on an Entity object

Parameters

• entity (Entity) – The entity the identifiers are deleted from

• identifier_type (str) – The identifier type

• identifier_value (str) – The identifier value

Returns
entity

Return type
Entity

metadata(uri)
Fetch the metadata document by its identifier, this is the key from the entity metadata map

Parameters
uri (str) – The metadata identifier

Returns
An XML document as a string

Return type
str

metadata_for_entity(entity, schema)
Fetch the first metadata document which matches the schema URI from an entity

Parameters

• entity (Entity) – The entity containing the metadata

• schema (str) – The metadata schema URI

Returns
The first XML document on the entity matching the schema URI

Return type
str

add_metadata(entity, schema, data)
Add a new descriptive XML document to an entity

Parameters

• entity (Entity) – The entity to add the metadata to

• schema (str) – The metadata schema URI

• data (data) – The XML document as a string or as a file bytes

Returns
The updated Entity

Return type
Entity

update_metadata(entity, schema, data)
Update an existing descriptive XML document on an entity

Parameters

24.1. Entity API 101

pyPreservica

• entity (Entity) – The entity to add the metadata to

• schema (str) – The metadata schema URI

• data (data) – The XML document as a string or as a file bytes

Returns
The updated Entity

Return type
Entity

delete_metadata(entity, entity, schema)
Delete an existing descriptive XML document on an entity by its schema This call will delete all fragments
with the same schema

Parameters

• entity (Entity) – The entity to add the metadata to

• schema (str) – The metadata schema URI

Returns
The updated Entity

Return type
Entity

move_sync(entity, dest_folder)
Move an entity (asset or folder) to a new folder This call blocks until the move is complete

Parameters

• entity (Entity) – The entity to move either asset or folder

• dest_folder (Entity) – The new destination folder. This can be None to move a folder
to the root of the repository

Returns
The updated entity

Return type
Entity

move_async(entity, dest_folder)
Move an entity (asset or folder) to a new folder This call returns immediately and does not block

Parameters

• entity (Entity) – The entity to move either asset or folder

• dest_folder (Entity) – The new destination folder. This can be None to move a folder
to the root of the repository

Returns
Progress ID token

Return type
str

move(entity, dest_folder)
Move an entity (asset or folder) to a new folder This call is an alias for the move_sync (blocking) method.

Parameters

102 Chapter 24. Developer Interface

pyPreservica

• entity (Entity) – The entity to move either asset or folder

• dest_folder (Entity) – The new destination folder. This can be None to move a folder
to the root of the repository

Returns
The updated entity

Return type
Entity

children(folder, maximum=50, next_page=None)
Return the child entities of a folder one page at a time. The caller is responsible for requesting the next page
of results.

Parameters

• folder (str) – The parent folder reference, None for the children of root folders

• maximum (int) – The maximum size of the result set in each page

• next_page (str) – A URL for the next page of results

Returns
A set of entity objects

Return type
set(Entity)

descendants(folder)
Return the immediate child entities of a folder using a lazy iterator. The paging is done internally using a
default page size of 50 elements. Callers can iterate over the result to get all children with a single call.

Parameters
folder (str) – The parent folder reference, None for the children of root folders

Returns
A set of entity objects (Folders and Assets)

Return type
set(Entity)

all_descendants(folder)
Return all child entities recursively of a folder or repository down to the assets using a lazy iterator. The
paging is done internally using a default page size of 25 elements. Callers can iterate over the result to get
all children with a single call.

Parameters
folder (str) – The parent folder reference, None for the children of root folders

Returns
A set of entity objects (Folders and Assets)

Return type
set(Entity)

delete_asset(asset, operator_comment, supervisor_comment)
Initiate and approve the deletion of an asset.

Parameters

• asset (Asset) – The asset to delete

• operator_comment (str) – The comments from the operator which are added to the logs

24.1. Entity API 103

pyPreservica

• supervisor_comment (str) – The comments from the supervisor which are added to the
logs

Returns
The asset reference

Return type
str

delete_folder(asset, operator_comment, supervisor_comment)
Initiate and approve the deletion of a folder.

Parameters

• asset (Folder) – The folder to delete

• operator_comment (str) – The comments from the operator which are added to the logs

• supervisor_comment (str) – The comments from the supervisor which are added to the
logs

Returns
The folder reference

Return type
str

thumbnail(entity, filename, size=Thumbnail.LARGE)
Get the thumbnail image for an asset or folder

Parameters

• entity (Entity) – The entity

• filename (str) – The file the image is written to

• size (Thumbnail) – The size of the thumbnail image

Returns
The filename

Return type
str

download(entity, filename)
Download the first generation of the access representation of an asset

Parameters

• entity (Entity) – The entity

• filename (str) – The file the image is written to

• size (Thumbnail) – The size of the thumbnail image

Returns
The filename

Return type
str

updated_entities(previous_days: int = 1)
Fetch a list of entities which have changed (been updated) over the previous n days.

This method uses a generator function to make repeated calls to the server for every page of results.

104 Chapter 24. Developer Interface

pyPreservica

Parameters
previous_days (int) – The number of days to check for changes.

Returns
A list of entities

Return type
list

all_events()

Returns a list of events for the user’s tenancy

This method uses a generator function to make repeated calls to the server for every page of results.

Returns
A list of events

Return type
list

entity_events(entity: Entity)
Returns a list of event actions performed against this entity

This method uses a generator function to make repeated calls to the server for every page of results.

Parameters
entity (Entity) – The entity

Returns
A list of events

Return type
list

add_thumbnail(entity: Entity, image_file: str)
Set the thumbnail for the entity to the uploaded image

Supported image formats are png, jpeg, tiff, gif and bmp. The image must be 10MB or less in size.

Parameters

• entity (Entity) – The entity

• image_file (str) – The path to the image

remove_thumbnail(entity: Entity)
Remove the thumbnail for the entity to the uploaded image

Parameters
image_file (str) – The path to the image

replace_generation_sync(content_object: ContentObject, file_name: str, fixity_algorithm, fixity_value)
Replace the last active generation of a content object with a new digital file.

Starts the workflow and blocks until the workflow completes.

Parameters

• content_object (ContentObject) – The content object to replace

• file_name (str) – The path to the new content object

• fixity_algorithm (str) – Optional fixity algorithm

• fixity_value (str) – Optional fixity value

24.1. Entity API 105

pyPreservica

Returns
Completed workflow status

Return type
str

replace_generation_async(content_object: ContentObject, file_name: str, fixity_algorithm, fixity_value)
Replace the last active generation of a content object with a new digital file.

Starts the workflow and returns a process ID

Parameters

• content_object (ContentObject) – The content object to replace

• file_name (str) – The path to the new content object

• fixity_algorithm (str) – Optional fixity algorithm

• fixity_value (str) – Optional fixity value

Returns
Process ID

Return type
str

get_async_progress(pid: str)
Return the status of a running process

Parameters
str (pid) – The progress ID

Returns
Workflow status

Return type
str

export_opex(entity: Entity, **kwargs)
Initiates export of the entity and downloads the opex package

Parameters

• entity (Entity) – The entity to export Asset or Folder

• IncludeContent (str) – “Content”, “NoContent”

• IncludeMetadata (str) – “Metadata”, “NoMetadata”, “MetadataWithEvents”

• IncludedGenerations (str) – “LatestActive”, “AllActive”, “All”

• IncludeParentHierarchy (str) – “true”, “false”

Returns
The path to the opex ZIP file

Return type
str

class pyPreservica.Generation

Generations represent changes to content objects over time, as formats become obsolete new generations may
need to be created to make the information accessible.

106 Chapter 24. Developer Interface

pyPreservica

original

original generation (True or False)

active

active generation (True or False)

format_group

format for this generation

effective_date

effective date generation

bitstreams

list of Bitstream objects

properties

list of technical properties each property is dict object containing PUID, PropertyName and Value

formats

list of technical formats each format is dict object containing PUID, FormatName and FormatVersion

class pyPreservica.Bitstream

Bitstreams represent the actual computer files as ingested into Preservica, i.e. the TIFF photograph or the PDF
document

filename

The filename of the original bitstream

length

The file size in bytes of the original Bitstream

fixity

Dictionary object of fixity values for this bitstream, the key is the algorithm name and the value is the fixity value

class pyPreservica.Representation

Representations are used to define how the information object are composed in terms of technology and structure.

rep_type

The type of representation

name

The name of representation

asset

The asset the representation belongs to

class pyPreservica.Entity

Entity is the base class for assets, folders and content objects They all have the following attributes

24.1. Entity API 107

pyPreservica

reference

The unique internal reference for the entity

title

The title of the entity

description

The description of the entity

security_tag

The security tag of the entity

parent

The unique internal reference for this entity’s parent object

The parent of an Asset is always a Folder

The parent of a Folder is always a Folder or None for a folder at the root of the repository

The parent of a Content Object is always an Asset

metadata

A map of descriptive metadata attached to the entity.

The key of the map is the metadata identifier used to retrieve the metadata document and the value is the schema
URI

entity_type

Assets have entity type EntityType.ASSET

Folders have entity type EntityType.FOLDER

Content Objects have entity type EntityType.CONTENT_OBJECT

class pyPreservica.Asset

Asset represents the information object or intellectual unit of information within the repository.

reference

The unique internal reference for the asset

title

The title of the asset

description

The description of the asset

security_tag

The security tag of the asset

parent

The unique internal reference for this asset’s parent folder

108 Chapter 24. Developer Interface

pyPreservica

metadata

A dict of descriptive metadata attached to the asset.

The key of the dict is the metadata identifier used to retrieve the metadata document and the value is the schema
URI

entity_type

Assets have entity type EntityType.ASSET

class pyPreservica.Folder

Folder represents the structure of the repository and contains both Assets and Folder objects.

reference

The unique internal reference for the folder

title

The title of the folder

description

The description of the folder

security_tag

The security tag of the folder

parent

The unique internal reference for this folder’s parent folder

metadata

A map of descriptive metadata attached to the folder.

The key of the map is the metadata identifier used to retrieve the metadata document and the value is the schema
URI

entity_type

Assets have entity type EntityType.FOLDER

class pyPreservica.ContentObject

ContentObject represents the internal structure of an asset.

reference

The unique internal reference for the content object

title

The title of the content object

description

The description of the content object

security_tag

The security tag of the content object

24.1. Entity API 109

pyPreservica

parent

The unique internal reference for this content object parent asset

metadata

A map of descriptive metadata attached to the content object.

The key of the map is the metadata identifier used to retrieve the metadata document and the value is the schema
URI

entity_type

Content objects have entity type EntityType.CONTENT_OBJECT

class pyPreservica.EntityType(value)
Enumeration of the Entity Types

class pyPreservica.RelationshipDirection(value)
An enumeration.

class pyPreservica.IntegrityCheck(check_type, success, date, adapter, fixed, reason)
Class to hold information about completed integrity checks

24.2 Content API

This part of the documentation covers all the interfaces of pyPreservica UploadAPI object.

class pyPreservica.ContentAPI

object_details(entity_type, reference)
Return a list of all the indexed fields in the Preservica search index.

Parameters

• entity_type (str) – Entity type, either “IO” or “SO”

• reference (str) – Entity reference

Returns
object attributes

Return type
dict

indexed_fields()

Return a list of all the indexed fields in the Preservica search index.

Returns
list of index field names

Return type
list

simple_search_list(query: str = '%', page_size: int = 10, *args)
Search Preservica using a simple search term across all indexed fields, the results are returned as generator

Parameters

• query (str) – Query term

110 Chapter 24. Developer Interface

pyPreservica

• page_size (int) – Number of results fetched between server calls

• args (tuple) – index names to include in the result

Returns
list of search result hits

Return type
list

simple_search_csv(query: str = '%', csv_file='search.csv', *args)
Search Preservica using a simple search term across all indexed fields, output the results to a csv file.

Parameters

• query (str) – Query term

• page_size (int) – Number of results fetched between server calls

• args (tuple) – index names to include in the result

24.3 Upload API

This part of the documentation covers all the interfaces of pyPreservica UploadAPI object.

pyPreservica.simple_asset_package(preservation_file=None, access_file=None, export_folder=None,
parent_folder=None, compress=True, **kwargs)

Create a Preservica package containing a single Asset from a single preservation file and an optional access file.
The Asset contains one Content Object for each representation.

If only the preservation file is provided the asset has one representation

Parameters

• preservation_file (str) – Path to the preservation file

• access_file (str) – Path to the access file

• export_folder (str) – The package location folder

• parent_folder (Folder) – The folder to ingest the asset into

• compress (bool) – Compress the ZIP file

• Title (str) – Asset Title

• Description (str) – Asset Description

• SecurityTag (str) – Asset SecurityTag

• CustomType (str) – Asset CustomType

• Preservation_Content_Title (str) – Title of the Preservation Representation Content
Object

• Preservation_Content_Description (str) – Description of the Preservation Repre-
sentation Content Object

• Access_Content_Title (str) – Title of the Access Representation Content Object

• Access_Content_Description (str) – Description of the Access Representation Content
Object

• Asset_Metadata (dict) – Dictionary of Asset metadata documents

24.3. Upload API 111

pyPreservica

• Identifiers (dict) – Dictionary of Asset rd party identifiers

pyPreservica.complex_asset_package(preservation_files_list=None, access_files_list=None,
export_folder=None, parent_folder=None, compress=True, **kwargs)

Create a Preservica package containing a single Asset from a multiple preservation files and optional
access files. The Asset contains multiple Content Objects within each representation.

If only the preservation files are provided the asset has one representation

param list preservation_files_list
Paths to the preservation files

param list access_files_list
Paths to the access files

param str export_folder
The package location folder

param Folder parent_folder
The folder to ingest the asset into

param bool compress
Compress the ZIP file

param str Title
Asset Title

param str Description
Asset Description

param str SecurityTag
Asset SecurityTag

param str CustomType
Asset CustomType

param str Preservation_Content_Title
Title of the Preservation Representation Content Object

param str Preservation_Content_Description
Description of the Preservation Representation Content Object

param str Access_Content_Title
Title of the Access Representation Content Object

param str Access_Content_Description
Description of the Access Representation Content Object

param dict Asset_Metadata
Dictionary of Asset metadata documents

param dict Identifiers
Dictionary of Asset rd party identifiers

optional kwargs map ‘Title’ Asset Title ‘Description’ Asset Description ‘SecurityTag’ Asset Security
Tag ‘CustomType’ Asset Type ‘Preservation_Content_Title’ Content Object Title of the Preservation
Object ‘Preservation_Content_Description’ Content Object Description of the Preservation Object ‘Ac-
cess_Content_Title’ Content Object Title of the Access Object ‘Access_Content_Description’ Content Object
Description of the Access Object ‘Preservation_Generation_Label’ Generation Label for the Preservation Ob-
ject ‘Access_Generation_Label’ Generation Label for the Access Object ‘Asset_Metadata’ Map of metadata

112 Chapter 24. Developer Interface

pyPreservica

schema/documents to add to asset ‘Identifiers’ Map of asset identifiers ‘Preservation_files_fixity_callback’ Call-
back to allow external generated fixity values ‘Access_files_fixity_callback’ Callback to allow external gen-
erated fixity values ‘IO_Identifier_callback’ Callback to allow external generated Asset identifier ‘Preserva-
tion_Representation_Name’ Name of the Preservation Representation ‘Access_Representation_Name’ Name of
the Access Representation

pyPreservica.cvs_to_xml(csv_file, xml_namespace, root_element, file_name_column='filename',
export_folder=None, additional_namespaces=None)

Export the rows of a CSV file as XML metadata documents which can be added to Preservica assets

Parameters

• csv_file (str) – Path to the csv file

• xml_namespace (str) – The XML namespace for the created XML documents

• root_element (str) – The root element for the XML documents

• file_name_column (str) – The CSV column which should be used to name the xml files

• export_folder (str) – The path to the export folder

• additional_namespaces (dict) – A map of prefix, uris to use as additional namespaces

class pyPreservica.UploadAPI(username: str | None = None, password: str | None = None, tenant: str | None
= None, server: str | None = None, use_shared_secret: bool = False,
two_fa_secret_key: str | None = None, protocol: str = 'https')

ingest_tweet(twitter_user=None, tweet_id: int = 0, twitter_consumer_key=None, twitter_secret_key=None,
folder=None, callback=None, **kwargs)

Ingest tweets from a twitter stream by twitter username

Parameters

• tweet_id

• twitter_user (str) – Twitter Username

• twitter_consumer_key (str) – Optional asset title

• twitter_secret_key (str) – Optional asset description

• folder (str) – Folder to ingest into

• callback (callback) – Optional upload progress callback

Raises
RuntimeError –

ingest_twitter_feed(twitter_user=None, num_tweets: int = 25, twitter_consumer_key=None,
twitter_secret_key=None, folder=None, callback=None, **kwargs)

Ingest tweets from a twitter stream by twitter username

Parameters

• twitter_user (str) – Twitter Username

• num_tweets (int) – The number of tweets from the stream

• twitter_consumer_key (str) – Optional asset title

• twitter_secret_key (str) – Optional asset description

• folder (str) – Folder to ingest into

• callback (callback) – Optional upload progress callback

24.3. Upload API 113

pyPreservica

Raises
RuntimeError –

ingest_web_video(url=None, parent_folder=None, **kwargs)
Ingest a web video such as YouTube etc based on the URL

Parameters

• url (str) – URL to the youtube video

• parent_folder (Folder) – The folder to ingest the video into

• Title (str) – Optional asset title

• Description (str) – Optional asset description

• SecurityTag (str) – Optional asset security tag

• Identifiers (dict) – Optional asset 3rd party identifiers

• Asset_Metadata (dict) – Optional asset additional descriptive metadata

• callback (callback) – Optional upload progress callback

Raises
RuntimeError –

upload_buckets()

Get a list of available upload buckets

Returns
dict of bucket names and regions

upload_credentials(location_id: str)
Retrieves temporary upload credentials (Amazon STS, or Azure SAS) for this location.

Returns
dict

upload_locations()

Upload locations are configured on the Sources page as ‘SIP Upload’. :return: dict

upload_zip_package(path_to_zip_package, folder=None, callback=None, delete_after_upload=False)
Uploads a zip file package directly to Preservica and starts an ingest workflow

Parameters

• path_to_zip_package (str) – Path to the package

• folder (Folder) – The folder to ingest the package into

• callback (Callable) – Optional callback to allow the callee to monitor the upload
progress

• delete_after_upload (bool) – Delete the local copy of the package after the upload
has completed

Returns
preservica-progress-token to allow the workflow progress to be monitored

Return type
str

Raises
RuntimeError –

114 Chapter 24. Developer Interface

pyPreservica

upload_zip_package_to_Azure(path_to_zip_package, container_name, folder=None,
delete_after_upload=False, show_progress=False)

Uploads a zip file package to an Azure container connected to a Preservica Cloud System

Parameters

• path_to_zip_package (str) – Path to the package

• container_name (str) – container connected to the ingest workflow

• folder (Folder) – The folder to ingest the package into

• delete_after_upload (bool) – Delete the local copy of the package after the upload
has completed

upload_zip_package_to_S3(path_to_zip_package, bucket_name, folder=None, callback=None,
delete_after_upload=False)

Uploads a zip file package to an S3 bucket connected to a Preservica Cloud System

Parameters

• path_to_zip_package (str) – Path to the package

• bucket_name (str) – Bucket connected to an ingest workflow

• folder (Folder) – The folder to ingest the package into

• callback (Callable) – Optional callback to allow the callee to monitor the upload
progress

• delete_after_upload (bool) – Delete the local copy of the package after the upload
has completed

upload_zip_to_Source(path_to_zip_package, container_name, folder=None, delete_after_upload=False,
show_progress=False)

Uploads a zip file package to either an Azure container or S3 bucket depending on the Preservica system
deployment

Parameters

• path_to_zip_package (str) – Path to the package

• container_name (str) – container connected to the ingest workflow

• folder (Folder) – The folder to ingest the package into

• delete_after_upload (bool) – Delete the local copy of the package after the upload
has completed

• show_progress (bool) – Show upload progress bar

24.4 Retention Management API

https://eu.preservica.com/api/entity/documentation.html#/%2Fretention-policies

class pyPreservica.RetentionPolicy(name: str, reference: str)

class pyPreservica.RetentionAssignment(entity_reference: str, policy_reference: str, api_id: str,
start_date, expired=False)

24.4. Retention Management API 115

https://eu.preservica.com/api/entity/documentation.html#/%2Fretention-policies

pyPreservica

class pyPreservica.RetentionAPI(username=None, password=None, tenant=None, server=None,
use_shared_secret=False, two_fa_secret_key: str | None = None, protocol:
str = 'https')

add_assignments(entity: Entity, policy: RetentionPolicy)→ RetentionAssignment
Assign a retention policy to an Asset.

Parameters

• entity (Entity) – The Preservica Entity to assign a policy to

• policy (RetentionPolicy) – The RetentionAssignment

Returns
The RetentionAssignment

Return type
RetentionAssignment

assignable_policy(reference: str, status: bool)
Make a policy assignable

Parameters

• reference (str) – The policy ID

• status (bool) – The assignable status

Returns

assignments(entity: Entity)→ Set[RetentionAssignment]
Return a list of retention policies for an entity.

Parameters
entity (class:Entity) – The entity to fetch assignments for

Returns
Set of policy assignments

Return type
Set[RetentionAssignment]

create_policy(**kwargs)
Create a new policy

Arguments are kwargs map

Name Description SecurityTag StartDateField Period PeriodUnit ExpiryAction ExpiryActionParameters
Restriction Assignable

delete_policy(reference: str)
Delete a retention policy

Parameters
reference (str) – The policy reference

policies()→ Set[RetentionPolicy]
Return a list of all retention policies Only returns the first 250 policies in the system

Returns
Set of retention policies

Return type
Set[RetentionPolicy]

116 Chapter 24. Developer Interface

pyPreservica

policy(reference: str)→ RetentionPolicy

Return a retention policy by reference

Parameters
reference (str) – The policy reference

Returns
The retention policy

Return type
RetentionPolicy

policy_by_name(name: str)→ RetentionPolicy

Return a retention policy by name

Parameters
name (str) – The policy name

Returns
The retention policy

Return type
RetentionPolicy

remove_assignments(retention_assignment: RetentionAssignment)
Delete a retention policy from an asset

Parameters
retention_assignment (RetentionAssignment) – The Preservica Entity to assign a pol-
icy to

Returns
The Asset Reference

Return type
str

update_policy(reference: str, **kwargs)
Update an existing policy

Arguments are kwargs map

Name Description SecurityTag StartDateField Period PeriodUnit ExpiryAction ExpiryActionParameters
Restriction Assignable

24.5 Workflow API

Note: The Workflow API is available for Enterprise Preservica users

https://eu.preservica.com/api/admin/documentation.html

class pyPreservica.WorkflowContext(workflow_id, workflow_name: str)
Defines a workflow context. The workflow context is the pre-defined workflow which is ready to run

24.5. Workflow API 117

https://eu.preservica.com/api/admin/documentation.html

pyPreservica

class pyPreservica.WorkflowInstance(instance_id: int)
Defines a workflow Instance. The workflow Instance is context which has been executed

class pyPreservica.WorkflowAPI(username: str | None = None, password: str | None = None, tenant: str |
None = None, server: str | None = None, use_shared_secret: bool = False,
two_fa_secret_key: str | None = None, protocol: str = 'https')

A class for calling the Preservica Workflow API

This API can be used to programmatically manage the Preservica Workflows.

https://preview.preservica.com/sdb/rest/workflow/documentation.html

get_workflow_contexts(definition: str)
Return a list of Workflow Contexts which have the same Workflow Definition

Parameters
definition (str) – The Workflow Definition ID

Returns
List of Workflow Contexts

Return type
list

get_workflow_contexts_by_type(workflow_type: str)
Return a list of Workflow Contexts which have the same Workflow type

Parameters
workflow_type (str) – The Workflow type Ingest, Access, Transformation or DataMan-
agement

Returns
List of Workflow Contexts

Return type
list

start_workflow_instance(workflow_context: WorkflowContext, **kwargs)
Start a workflow context

Returns a Correlation Id which is used to monitor the workflow progress

Parameters

• workflow_context (WorkflowContext) – The workflow context to start

• kwargs – Key/Values to pass to the workflow instance

Returns
correlation_id

Return type
str

terminate_workflow_instance(instance_ids)
Terminate a workflow by its instance id

Parameters
instance_ids (int or a list of int) – The Workflow instance

118 Chapter 24. Developer Interface

https://preview.preservica.com/sdb/rest/workflow/documentation.html

pyPreservica

workflow_instance(instance_id: int)→ WorkflowInstance
Return a workflow instance by its Id

Parameters
instance_id (int) – The Workflow instance

Returns
workflow_instance

Return type
WorkflowInstance

workflow_instances(workflow_state: str, workflow_type: str, **kwargs)
Return a list of Workflow instances

Parameters

• workflow_state – The Workflow state Aborted, Active, Completed, Fin-
ished_Mixed_Outcome, Pending, Suspended, Unknown, or Failed

• workflow_type – The Workflow type Ingest, Access, Transformation or DataManage-
ment

24.6 Administration and Management API

Note: The Administration and Management API needs to be enabled by the help desk.

https://eu.preservica.com/sdb/rest/workflow/documentation.html

class pyPreservica.AdminAPI(username: str | None = None, password: str | None = None, tenant: str | None =
None, server: str | None = None, use_shared_secret: bool = False,
two_fa_secret_key: str | None = None, protocol: str = 'https')

add_security_tag(tag_name)→ str
Create a new security tag

Parameters
tag_name (str) – The new security tag

Returns
The new security tag

Return type
str

add_system_role(role_name)→ str
Create a new user roles

Parameters
role_name (str) – The new role

Returns
The new role

Return type
str

24.6. Administration and Management API 119

https://eu.preservica.com/sdb/rest/workflow/documentation.html

pyPreservica

add_user(username: str, full_name: str, roles: list, externally_authenticated: bool = False)
Add a new user

Parameters

• externally_authenticated

• username (str) – email address of the preservica user

• full_name (str) – Users real name

• roles (list) – List of roles assigned to the user

Returns
dictionary of user attributes

Return type
dict

add_xml_document(name: str, xml_data: Any, document_type: str = 'MetadataTemplate')
Add a new XML document to Preservica The default type of XML document is a descriptive metadata
template

Options are:

MetadataDropdownLists -> Authority Lists CustomIndexDefinition -> Custom Search Indexes Meta-
dataTemplate -> Metadata Template UploadWizardConfigurationFile -> Upload Wizard Config Config-
urationFile -> Heritrix Config File

Parameters

• name (str) – The name of the xml document

• xml_data – The xml schema as a UTF-8 string or as a file like object

• document_type (str) – The type of the XML document, defaults to descriptive metadata
templates

Returns
None

Return type
None

add_xml_schema(name: str, description: str, originalName: str, xml_data: Any)
Add a new XSD document to Preservica

Parameters

• name (str) – Name for the XSD schema

• description (str) – Description for the XSD schema

• originalName (str) – The original file name for the schema on disk

• xml_data (Any) – The xml schema as a UTF-8 string or a file like object

Returns
None

Return type
None

120 Chapter 24. Developer Interface

pyPreservica

add_xml_transform(name: str, input_uri: str, output_uri: str, purpose: str, originalName: str, xml_data:
Any)

Add a new XML transform to Preservica

Parameters

• name (str) – The name of the XML transform

• input_uri (str) – The URI of the input XML document

• output_uri (str) – The URI of the output XML document

• purpose (str) – The purpose of the transform, “transform” , “edit”, “view”

• originalName (str) – The original file name of the transform

• xml_data (Any) – The transform xml as a string or file like object

Returns
None

Return type
None

all_users()→ list
Return a list of all users in the system

Return list of usernames
Return type

list

change_user_display_name(username: str, new_display_name: str)→ dict
Change the user display name

Parameters

• username (str) – email address of the preservica user

• new_display_name (str) – Users real name

Returns
dictionary of user attributes

Return type
dict

delete_security_tag(tag_name)
Delete a security tag

Parameters
tag_name (str) – The security tag to delete

delete_system_role(role_name)
Delete a system role

Parameters
role_name (str) – The role to delete

delete_user(username: str)
Delete a user

Parameters
username (str) – email address of the preservica user

24.6. Administration and Management API 121

pyPreservica

delete_xml_document(uri: str)
Delete a XML document from Preservica

Parameters
uri (str) – The URI of the xml document to delete

Returns
None

Return type
None

delete_xml_schema(uri: str)
Delete an XML schema from Preservica

Parameters
uri (str) – The URI of the xml schema to delete

Returns
None

Return type
None

delete_xml_transform(input_uri: str, output_uri: str)
Delete a XSD document from Preservica

Parameters

• input_uri (str) – The URI of the input XML document

• output_uri (str) – The URI of the output XML document

Returns
None

Return type
None

disable_user(username)

Disable a Preservica User to prevent them logging in

Parameters
username (str) – email address of the preservica user

enable_user(username)
Enable a Preservica User

Parameters
username (str) – email address of the preservica user

security_tags()→ list
List all the security tags in the system

Returns
list of security tags

Return type
list

122 Chapter 24. Developer Interface

pyPreservica

system_roles()→ list
List all the user access roles in the system

Returns
list of roles

Return type
list

user_details(username: str)→ dict
Get the details of a user by their username

Parameters
username (str) – email address of the preservica user

Returns
dictionary of user attributes

Return type
dict

user_report(report_name='users.csv')
Create a report on all tenancy users :return:

xml_document(uri: str)→ str
fetch the metadata XML document as a string by its URI

Parameters
uri (str) – The URI of the xml document

Returns
The XML document as a string

Return type
str

xml_documents()→ List
fetch the list of XML documents stored in Preservica

Returns
List of XML documents stored in Preservica

Return type
list

xml_schema(uri: str)→ str

fetch the metadata schema XSD document as a string by its URI

Parameters
uri (str) – The URI of the xml schema

Returns
The XML schema as a string

Return type
str

xml_schemas()→ List

fetch the list of metadata schema XSD documents stored in Preservica

24.6. Administration and Management API 123

pyPreservica

Returns
List of XML schema’s stored in Preservica

Return type
list

xml_transform(input_uri: str, output_uri: str)→ str
fetch the XML transform as a string by its URIs

Parameters

• input_uri (str) – The URI of the input XML document

• output_uri (str) – The URI of the output XML document

Returns
The XML transform as a string

Return type
str

xml_transforms()→ List
fetch the list of xml transforms stored in Preservica

Returns
List of XML transforms stored in Preservica

Return type
list

24.7 Process Monitor API

https://us.preservica.com/api/processmonitor/documentation.html

class pyPreservica.MonitorStatus(value)
An enumeration.

class pyPreservica.MonitorCategory(value)
An enumeration.

class pyPreservica.MonitorAPI(username: str | None = None, password: str | None = None, tenant: str | None
= None, server: str | None = None, use_shared_secret: bool = False,
two_fa_secret_key: str | None = None, protocol: str = 'https')

A class for the Preservica Repository Process Monitor API

https://us.preservica.com/api/processmonitor/documentation.html

API for retrieving and updating monitoring information about processes.

messages(monitor_id, status: MessageStatus | None = None)→ Generator
List of messages for a process

Parameters

• monitor_id (str) – The Process ID

• status (MessageStatus) – The message status, info, warning, error etc

Returns
Generator for each message, each message is a dict object

124 Chapter 24. Developer Interface

https://us.preservica.com/api/processmonitor/documentation.html
https://us.preservica.com/api/processmonitor/documentation.html

pyPreservica

monitors(status: MonitorStatus | None = None, category: MonitorCategory | None = None)→ Generator
Get a filtered list of non-abandoned process monitors

Parameters

• status (MonitorStatus) – process status values (Pending, Running, Succeeded, Failed,
Suspended, Recoverable)

• category (MonitorCategory) – process categories (Ingest, Export, DataManagement,
Automated)

Returns
Generator for each monitor

timeseries(monitor_id)
Get the historical record of progress for a single monitor

Parameters
monitor_id (str) – The Process ID

Returns
List of timeseries information

24.8 WebHook API

https://us.preservica.com/api/webhook/documentation.html

class pyPreservica.TriggerType(value)
Enumeration of the Web hooks Trigger Types

class pyPreservica.WebHooksAPI(username: str | None = None, password: str | None = None, tenant: str |
None = None, server: str | None = None, use_shared_secret: bool = False,
two_fa_secret_key: str | None = None, protocol: str = 'https')

Class to register new webhook endpoints

subscribe(url: str, triggerType: TriggerType, secret: str)
Subscribe to a new web hook

Parameters

• url

• triggerType

• secret

Returns
json_response

subscriptions()

Return all the current active web hook subscriptions as a json document

Returns
list of web hooks

unsubscribe(subscription_id: str)
Unsubscribe from the provided webhook.

Parameters
subscription_id

24.8. WebHook API 125

https://us.preservica.com/api/webhook/documentation.html

pyPreservica

Returns

unsubscribe_all()

Unsubscribe from all webhooks. :return:

24.9 Authority Records API

https://eu.preservica.com/api/reference-metadata/documentation.html

This API is used for managing the Authority records within Preservica.

class pyPreservica.Table(reference: str, name: str, security_tag: str, displayField: str, metadataConnections:
list)

class pyPreservica.AuthorityAPI(username: str | None = None, password: str | None = None, tenant: str |
None = None, server: str | None = None, use_shared_secret: bool = False,
two_fa_secret_key: str | None = None, protocol: str = 'https')

add_record(table: Table, record: dict)
Add a new record to an existing table

Parameters

• table – The Table to add the record to

• record – The record

Type
table: Table

Type
record: dict

Returns
A single record

Return type
dict

add_records(table: Table, csv_file, encoding=None)
Add new records to an existing table from a CSV document

Parameters

• table – The Table to add the record to

• csv_file – The path to the CSV document

• encoding – The encoding used to open the csv document

Type
table: Table

Type
csv_file: str

Type
encoding: str

126 Chapter 24. Developer Interface

https://eu.preservica.com/api/reference-metadata/documentation.html

pyPreservica

delete_record(reference: str)
Delete a record from a table by its reference

Parameters
reference – The reference of the record to delete

Type
reference: str

record(reference: str)→ dict
Return a record by its reference

Parameters
reference – The record reference

Type
reference: str

Returns
A single record

Return type
dict

records(table: Table)→ List[dict]
Return all records from a table

Parameters
table – The authority table

Type
table: Table

Returns
List of records

Return type
list[dict]

table(reference: str)→ Table
fetch an authority table by its reference

Parameters
reference – The reference for the authority table

Type
reference: str

Returns
An authority table

Return type
Table

tables()→ Set[Table]
List reference metadata tables

Returns
Set of authority tables

Return type
set(Table)

24.9. Authority Records API 127

pyPreservica

128 Chapter 24. Developer Interface

CHAPTER

TWENTYFIVE

INDEX

• genindex

129

pyPreservica

130 Chapter 25. Index

PYTHON MODULE INDEX

p
pyPreservica, 1

131

pyPreservica

132 Python Module Index

INDEX

A
active (pyPreservica.Generation attribute), 107
add_assignments() (pyPreservica.RetentionAPI

method), 116
add_identifier() (pyPreservica.EntityAPI method),

100
add_metadata() (pyPreservica.EntityAPI method), 101
add_record() (pyPreservica.AuthorityAPI method),

126
add_records() (pyPreservica.AuthorityAPI method),

126
add_security_tag() (pyPreservica.AdminAPI

method), 119
add_system_role() (pyPreservica.AdminAPI method),

119
add_thumbnail() (pyPreservica.EntityAPI method),

105
add_user() (pyPreservica.AdminAPI method), 119
add_xml_document() (pyPreservica.AdminAPI

method), 120
add_xml_schema() (pyPreservica.AdminAPI method),

120
add_xml_transform() (pyPreservica.AdminAPI

method), 120
AdminAPI (class in pyPreservica), 119
all_descendants() (pyPreservica.EntityAPI method),

103
all_events() (pyPreservica.EntityAPI method), 105
all_users() (pyPreservica.AdminAPI method), 121
Asset (class in pyPreservica), 108
asset (pyPreservica.Representation attribute), 107
asset() (pyPreservica.EntityAPI method), 97
assignable_policy() (pyPreservica.RetentionAPI

method), 116
assignments() (pyPreservica.RetentionAPI method),

116
AuthorityAPI (class in pyPreservica), 126

B
Bitstream (class in pyPreservica), 107
bitstream_content() (pyPreservica.EntityAPI

method), 100

bitstreams (pyPreservica.Generation attribute), 107

C
change_user_display_name() (pyPreser-

vica.AdminAPI method), 121
children() (pyPreservica.EntityAPI method), 103
complex_asset_package() (in module pyPreservica),

112
content_object() (pyPreservica.EntityAPI method),

97
content_objects() (pyPreservica.EntityAPI method),

99
ContentAPI (class in pyPreservica), 110
ContentObject (class in pyPreservica), 109
create_folder() (pyPreservica.EntityAPI method), 99
create_policy() (pyPreservica.RetentionAPI method),

116
cvs_to_xml() (in module pyPreservica), 113

D
delete_asset() (pyPreservica.EntityAPI method), 103
delete_folder() (pyPreservica.EntityAPI method),

104
delete_identifiers() (pyPreservica.EntityAPI

method), 100
delete_metadata() (pyPreservica.EntityAPI method),

102
delete_policy() (pyPreservica.RetentionAPI method),

116
delete_record() (pyPreservica.AuthorityAPI method),

126
delete_security_tag() (pyPreservica.AdminAPI

method), 121
delete_system_role() (pyPreservica.AdminAPI

method), 121
delete_user() (pyPreservica.AdminAPI method), 121
delete_xml_document() (pyPreservica.AdminAPI

method), 121
delete_xml_schema() (pyPreservica.AdminAPI

method), 122
delete_xml_transform() (pyPreservica.AdminAPI

method), 122

133

pyPreservica

descendants() (pyPreservica.EntityAPI method), 103
description (pyPreservica.Asset attribute), 108
description (pyPreservica.ContentObject attribute),

109
description (pyPreservica.Entity attribute), 108
description (pyPreservica.Folder attribute), 109
disable_user() (pyPreservica.AdminAPI method), 122
download() (pyPreservica.EntityAPI method), 104

E
effective_date (pyPreservica.Generation attribute),

107
enable_user() (pyPreservica.AdminAPI method), 122
Entity (class in pyPreservica), 107
entity() (pyPreservica.EntityAPI method), 98
entity_events() (pyPreservica.EntityAPI method),

105
entity_type (pyPreservica.Asset attribute), 109
entity_type (pyPreservica.ContentObject attribute),

110
entity_type (pyPreservica.Entity attribute), 108
entity_type (pyPreservica.Folder attribute), 109
EntityAPI (class in pyPreservica), 97
EntityType (class in pyPreservica), 110
export_opex() (pyPreservica.EntityAPI method), 106

F
filename (pyPreservica.Bitstream attribute), 107
fixity (pyPreservica.Bitstream attribute), 107
Folder (class in pyPreservica), 109
folder() (pyPreservica.EntityAPI method), 97
format_group (pyPreservica.Generation attribute), 107
formats (pyPreservica.Generation attribute), 107

G
Generation (class in pyPreservica), 106
generations() (pyPreservica.EntityAPI method), 99
get_async_progress() (pyPreservica.EntityAPI

method), 106
get_workflow_contexts() (pyPreser-

vica.WorkflowAPI method), 118
get_workflow_contexts_by_type() (pyPreser-

vica.WorkflowAPI method), 118

I
identifier() (pyPreservica.EntityAPI method), 100
identifiers_for_entity() (pyPreservica.EntityAPI

method), 100
indexed_fields() (pyPreservica.ContentAPI method),

110
ingest_tweet() (pyPreservica.UploadAPI method),

113
ingest_twitter_feed() (pyPreservica.UploadAPI

method), 113

ingest_web_video() (pyPreservica.UploadAPI
method), 114

IntegrityCheck (class in pyPreservica), 110

L
length (pyPreservica.Bitstream attribute), 107

M
messages() (pyPreservica.MonitorAPI method), 124
metadata (pyPreservica.Asset attribute), 108
metadata (pyPreservica.ContentObject attribute), 110
metadata (pyPreservica.Entity attribute), 108
metadata (pyPreservica.Folder attribute), 109
metadata() (pyPreservica.EntityAPI method), 101
metadata_for_entity() (pyPreservica.EntityAPI

method), 101
module

pyPreservica, 1
MonitorAPI (class in pyPreservica), 124
MonitorCategory (class in pyPreservica), 124
monitors() (pyPreservica.MonitorAPI method), 124
MonitorStatus (class in pyPreservica), 124
move() (pyPreservica.EntityAPI method), 102
move_async() (pyPreservica.EntityAPI method), 102
move_sync() (pyPreservica.EntityAPI method), 102

N
name (pyPreservica.Representation attribute), 107

O
object_details() (pyPreservica.ContentAPI method),

110
original (pyPreservica.Generation attribute), 106

P
parent (pyPreservica.Asset attribute), 108
parent (pyPreservica.ContentObject attribute), 109
parent (pyPreservica.Entity attribute), 108
parent (pyPreservica.Folder attribute), 109
policies() (pyPreservica.RetentionAPI method), 116
policy() (pyPreservica.RetentionAPI method), 117
policy_by_name() (pyPreservica.RetentionAPI

method), 117
properties (pyPreservica.Generation attribute), 107
pyPreservica

module, 1

R
record() (pyPreservica.AuthorityAPI method), 127
records() (pyPreservica.AuthorityAPI method), 127
reference (pyPreservica.Asset attribute), 108
reference (pyPreservica.ContentObject attribute), 109
reference (pyPreservica.Entity attribute), 107

134 Index

pyPreservica

reference (pyPreservica.Folder attribute), 109
RelationshipDirection (class in pyPreservica), 110
remove_assignments() (pyPreservica.RetentionAPI

method), 117
remove_thumbnail() (pyPreservica.EntityAPI

method), 105
rep_type (pyPreservica.Representation attribute), 107
replace_generation_async() (pyPreser-

vica.EntityAPI method), 106
replace_generation_sync() (pyPreser-

vica.EntityAPI method), 105
Representation (class in pyPreservica), 107
representations() (pyPreservica.EntityAPI method),

99
RetentionAPI (class in pyPreservica), 115
RetentionAssignment (class in pyPreservica), 115
RetentionPolicy (class in pyPreservica), 115

S
save() (pyPreservica.EntityAPI method), 98
security_tag (pyPreservica.Asset attribute), 108
security_tag (pyPreservica.ContentObject attribute),

109
security_tag (pyPreservica.Entity attribute), 108
security_tag (pyPreservica.Folder attribute), 109
security_tag_async() (pyPreservica.EntityAPI

method), 98
security_tag_sync() (pyPreservica.EntityAPI

method), 98
security_tags() (pyPreservica.AdminAPI method),

122
simple_asset_package() (in module pyPreservica),

111
simple_search_csv() (pyPreservica.ContentAPI

method), 111
simple_search_list() (pyPreservica.ContentAPI

method), 110
start_workflow_instance() (pyPreser-

vica.WorkflowAPI method), 118
subscribe() (pyPreservica.WebHooksAPI method),

125
subscriptions() (pyPreservica.WebHooksAPI

method), 125
system_roles() (pyPreservica.AdminAPI method), 122

T
Table (class in pyPreservica), 126
table() (pyPreservica.AuthorityAPI method), 127
tables() (pyPreservica.AuthorityAPI method), 127
terminate_workflow_instance() (pyPreser-

vica.WorkflowAPI method), 118
thumbnail() (pyPreservica.EntityAPI method), 104
timeseries() (pyPreservica.MonitorAPI method), 125
title (pyPreservica.Asset attribute), 108

title (pyPreservica.ContentObject attribute), 109
title (pyPreservica.Entity attribute), 108
title (pyPreservica.Folder attribute), 109
TriggerType (class in pyPreservica), 125

U
unsubscribe() (pyPreservica.WebHooksAPI method),

125
unsubscribe_all() (pyPreservica.WebHooksAPI

method), 126
update_metadata() (pyPreservica.EntityAPI method),

101
update_policy() (pyPreservica.RetentionAPI method),

117
updated_entities() (pyPreservica.EntityAPI

method), 104
upload_buckets() (pyPreservica.UploadAPI method),

114
upload_credentials() (pyPreservica.UploadAPI

method), 114
upload_locations() (pyPreservica.UploadAPI

method), 114
upload_zip_package() (pyPreservica.UploadAPI

method), 114
upload_zip_package_to_Azure() (pyPreser-

vica.UploadAPI method), 114
upload_zip_package_to_S3() (pyPreser-

vica.UploadAPI method), 115
upload_zip_to_Source() (pyPreservica.UploadAPI

method), 115
UploadAPI (class in pyPreservica), 113
user_details() (pyPreservica.AdminAPI method), 123
user_report() (pyPreservica.AdminAPI method), 123

W
WebHooksAPI (class in pyPreservica), 125
workflow_instance() (pyPreservica.WorkflowAPI

method), 118
workflow_instances() (pyPreservica.WorkflowAPI

method), 119
WorkflowAPI (class in pyPreservica), 118
WorkflowContext (class in pyPreservica), 117
WorkflowInstance (class in pyPreservica), 117

X
xml_document() (pyPreservica.AdminAPI method), 123
xml_documents() (pyPreservica.AdminAPI method),

123
xml_schema() (pyPreservica.AdminAPI method), 123
xml_schemas() (pyPreservica.AdminAPI method), 123
xml_transform() (pyPreservica.AdminAPI method),

124
xml_transforms() (pyPreservica.AdminAPI method),

124

Index 135

	Why Should I Use This?
	SDK Features
	Entity API Features
	Content API Features
	Upload API Features
	Admin API Features
	Retention Management API Features
	Workflow API Features
	Webhook API Features
	Authority Records API Features

	Background
	PIP Installation
	Get the Source Code
	Contributing
	Support
	Examples
	Authentication
	2 Factor Authentication
	SSL Certificates
	Application Logging
	Entity API
	Fetching Entities (Assets, Folders & Content Objects)
	Fetching Children of Entities
	Creating new Folders
	Adding Physical Assets
	Updating Entities
	Security Tags
	3rd Party External Identifiers
	Descriptive Metadata
	Relationships Between Entities
	Representations, Content Objects & Generations
	Integrity Check History
	Moving Entities
	Deleting Entities
	Finding Updated Entities
	Downloading Files
	Events on Specific Entities
	Events Across Entities
	Ingest Events
	Asset and Folder Thumbnail Images
	Replacing Content Objects
	Export OPEX Package

	Content API
	object-details
	indexed-fields
	Search
	Search Progress
	Reporting Examples
	Create a spreadsheet containing all Assets within the repository
	Create a spreadsheet containing all Assets and Folders within the repository
	Create a spreadsheet containing all Assets and Folders underneath a specific folder

	User Security Tags

	Upload API
	Uploading Packages
	Monitoring Upload Progress
	Creating Packages
	Creating Packages with Multiple Representations
	Custom Fixity Generation
	Bulk Package Creation
	Package Examples
	Ingest a single digital file as an asset, with a progress bar during upload, delete the package after upload has completed.
	Ingest a single digital file as an asset, with a custom asset Title and Description
	Ingest each jpeg file in a directory as an individual asset
	Ingest a single digital file as an asset with a 3rd party identifier and custom metadata
	Create a single Asset with 2 Representations (Preservation and Access) each Representation has 1 Content Object
	Create a package with 1 Asset 2 Representations (Preservation and Access) and multiple Content Objects (one for every image)

	Spreadsheet Metadata
	Ingest Web Video
	Ingest Twitter Feeds
	Crawl and ingest from a filesystem

	Workflow API
	Fetching Workflow Contexts
	Fetching Workflow Instances
	Starting Workflows

	Admin API
	Metadata Management (XSD Schema’s, XML Documents & XSLT Transforms)
	User Management
	Security Tags

	Retention API
	Retention Policies
	Retention Assignments

	Registry API
	Non-Authenticated Read Access

	Monitor API
	Monitors
	Messages
	Monitor Timeseries

	WebHook API
	Subscribing
	Listing Subscriptions
	Unsubscribe
	Reference Web Server

	Authority Records API
	Authority Tables
	Authority Records

	Example Applications
	Developer Interface
	Entity API
	Content API
	Upload API
	Retention Management API
	Workflow API
	Administration and Management API
	Process Monitor API
	WebHook API
	Authority Records API

	Index
	Python Module Index
	Index

