

Welcome to pyPreservica’s documentation

Release v2.6.7.

[image: _images/pyPreservica.svg]
 [https://pypi.org/project/pyPreservica/][image: _images/pyPreservica1.svg]
 [https://pypi.org/project/pyPreservica/][image: _images/pyPreservica2.svg]
 [https://pypi.org/project/pyPreservica/][image: _images/67f4c81c62af3b1bee816c6e9ed07f087787b906.svg]
 [https://pypreservica.readthedocs.io/en/latest]pyPreservica is an open source, python client for the Preservica APIs

pyPreservica is a 3rd party Python Software Development Kit (SDK) for the Preservica API,
which allows Preservica users to write software that makes use of the Preservica repository services.
This library provides classes for working with a range of the Preservica APIs.

https://developers.preservica.com/api-reference

This version of the documentation is for use against a Preservica 7.0-6.2 systems
For Preservica 6.0 and 6.1 see the previous version [https://pypreservica.readthedocs.io/en/v6.1/]

pyPreservica is an open source 3rd party library and is not affiliated with Preservica Ltd [https://preservica.com/]
There is no support for use of the library by Preservica Ltd. For support see Support

Table of Contents:

	Why Should I Use This?

	SDK Features
	Entity API Features

	Content API Features

	Upload API Features

	Admin API Features

	Retention Management API Features

	Workflow API Features

	Webhook API Features

	Authority Records API Features

	Background

	PIP Installation

	Get the Source Code

	Contributing

	Support

	Examples

	Authentication

	2 Factor Authentication

	SSL Certificates

	Application Logging

	Entity API
	Fetching Entities (Assets, Folders & Content Objects)

	Fetching Children of Entities

	Creating new Folders

	Adding Physical Assets

	Updating Entities

	Security Tags

	3rd Party External Identifiers

	Descriptive Metadata

	Relationships Between Entities

	Representations, Content Objects & Generations

	Integrity Check History

	Moving Entities

	Deleting Entities

	Finding Updated Entities

	Downloading Files

	Events on Specific Entities

	Events Across Entities

	Ingest Events

	Asset and Folder Thumbnail Images

	Replacing Content Objects

	Export OPEX Package

	Content API
	object-details

	indexed-fields

	Search

	Search Progress

	Reporting Examples
	Create a spreadsheet containing all Assets within the repository

	Create a spreadsheet containing all Assets and Folders within the repository

	Create a spreadsheet containing all Assets and Folders underneath a specific folder

	User Security Tags

	Upload API
	Uploading Packages

	Monitoring Upload Progress

	Creating Packages

	Creating Packages with Multiple Representations

	Custom Fixity Generation

	Bulk Package Creation

	Package Examples
	Ingest a single digital file as an asset, with a progress bar during upload, delete the package after upload has completed.

	Ingest a single digital file as an asset, with a custom asset Title and Description

	Ingest each jpeg file in a directory as an individual asset

	Ingest a single digital file as an asset with a 3rd party identifier and custom metadata

	Create a single Asset with 2 Representations (Preservation and Access) each Representation has 1 Content Object

	Create a package with 1 Asset 2 Representations (Preservation and Access) and multiple Content Objects (one for every image)

	Spreadsheet Metadata

	Ingest Web Video

	Ingest Twitter Feeds

	Crawl and ingest from a filesystem

	Workflow API
	Fetching Workflow Contexts

	Fetching Workflow Instances

	Starting Workflows

	Admin API
	Metadata Management (XSD Schema’s, XML Documents & XSLT Transforms)

	User Management

	Security Tags

	Retention API
	Retention Policies

	Retention Assignments

	Registry API
	Non-Authenticated Read Access

	Monitor API
	Monitors

	Messages

	Monitor Timeseries

	WebHook API
	Subscribing

	Listing Subscriptions

	Unsubscribe

	Reference Web Server

	Authority Records API
	Authority Tables

	Authority Records

	Example Applications

	Developer Interface
	Entity API
	EntityAPI

	Generation

	Bitstream

	Representation

	Entity

	Asset

	Folder

	ContentObject

	EntityType

	RelationshipDirection

	IntegrityCheck

	Content API
	ContentAPI

	Upload API
	simple_asset_package()

	complex_asset_package()

	cvs_to_xml()

	UploadAPI

	Retention Management API
	RetentionPolicy

	RetentionAssignment

	RetentionAPI

	Workflow API
	WorkflowContext

	WorkflowInstance

	WorkflowAPI

	Administration and Management API
	AdminAPI

	Process Monitor API
	MonitorStatus

	MonitorCategory

	MonitorAPI

	WebHook API
	TriggerType

	WebHooksAPI

	Authority Records API
	Table

	AuthorityAPI

Index

	Index

Why Should I Use This?

The goal of pyPreservica is to allow you to make use of the Preservica Entity API for reading and writing objects within
a Preservica repository without having to manage the underlying REST HTTPS requests and XML parsing.
The library provides a level of abstraction which reflects the underlying data model, such as structural and
information objects.

The pyPreservica library allows Preservica users to build applications which interact with the repository such as metadata
synchronisation with 3rd party systems etc.

Hint

Access to the Preservica API’s for the cloud hosted system does depend on which Preservica Edition has been
licensed. See https://preservica.com/digital-archive-software/products-editions for details.

SDK Features

Entity API Features

	Fetch and Update Entity Objects (Folders, Assets, Content Objects)

	Add, Delete and Update External Identifiers

	Add, Delete and Update Descriptive Metadata Fragments

	Change Security tags on Folders and Assets

	Create new Folder Entities

	Move Assets and Folders within the repository

	Deleting Assets and Folders

	Fetch Folders and Assets belonging to parent Folders

	Retrieve Representations, Generations & Bitstreams from Assets

	Download digital files and thumbnails

	Fetch lists of changed entities over the last n days

	Request information on completed integrity checks

	Add or remove asset and folder icons

	Replace existing content objects within an Asset

	Export OPEX Package

	Fetch audit trail events on Entities and across the repository

	Create Relationships between Assets

Content API Features

	Fetch a list of indexed Solr Fields

	Search based on a single query term

	Filtered searches on indexed fields

Upload API Features

	Create single Content Object Packages with multiple Representations

	Create multiple Content Object Packages with multiple Representations

	Upload packages to Preservica

	Spreadsheet Metadata

	Ingest Web Video

	Ingest Twitter Feeds

Admin API Features

	Schema Management (XML Templates, XSD Schema’s & XSLT Transforms)

	User Management (create and remove user accounts)

	Security Tags (add and remove security tags)

Retention Management API Features

	Create new retention policies

	Delete retention policies

	Update retention policies

	Assign retention policies to entities

Workflow API Features

	Get Workflow Contexts

	Get Workflow Instance

	Start Workflow Instances

Webhook API Features

	Subscribe to Webhook endpoints

	Unsubscribe

	List Subscriptions

Authority Records API Features

	Get an Authority table by its reference

	List all Authority tables

	Return all records from a Authority table

	Add records to an Authority table

	Delete records from an Authority table

Background

They key to working with the pyPreservica library is that the services follow the Preservica core data model closely.

[image: _images/entity-API.jpg]
The Preservica data model represents a hierarchy of entities, starting with the structural objects which are used to
represent aggregations of digital assets. Structural objects define the organisation of the data. In a library context
they may be referred to as collections, in an archival context they may be Fonds, Sub-Fonds, Series etc and in a
records management context they could be simply a hierarchy of folders or directories.

These structural objects may contain other structural objects in the same way as a computer filesystem may contain
folders within folders.

Within the structural objects comes the information objects. These objects which are sometimes referred to as the
digital assets are what PREMIS defines as an Intellectual Entity. Information objects are considered a single
intellectual unit for purposes of management and description: for example, a book, document, map, photograph or database etc.

Representations are used to define how the information object are composed in terms of technology and structure.
For example, a book may be represented as a single multiple page PDF, a single eBook file or a set of single page image files.

Representations are usually associated with a use case such as access or long-term preservation.
All Information objects have a least one representation defined by default. Multiple representations can be either
created outside of Preservica through a process such as digitisation or within Preservica through preservation processes such a normalisation.

Content Objects represent the components of the asset. Simple assets such as digital images may only contain a
single content object whereas more complex assets such as books or 3d models may contain multiple content objects.
In most cases content objects will map directly to digital files or bitstreams.

Generations represent changes to content objects over time, as formats become obsolete new generations may need
to be created to make the information accessible.

Bitstreams represent the actual computer files as ingested into Preservica, i.e. the TIFF photograph or the PDF document.

PIP Installation

pyPreservica is available from the Python Package Index (PyPI)

https://pypi.org/project/pyPreservica/

pyPreservica is built and tested against Python 3.8. Older versions of Python may not work.

To install pyPreservica, simply run this simple command in your terminal of choice:

$ pip install pyPreservica

or you can install in a virtual python environment using:

$ pipenv install pyPreservica

pyPreservica is under active development and the latest version is installed using

$ pip install --upgrade pyPreservica

Get the Source Code

pyPreservica is developed on GitHub, where the code is
always available [https://github.com/carj/pyPreservica].

You can clone the public repository

$ git clone git://github.com/carj/pyPreservica.git

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/carj/pyPreservica

Support

pyPreservica is 3rd party open source client and is
not affiliated or supported by Preservica Ltd [https://preservica.com/]

For announcements about new versions and discussion of pyPreservica please subscribe to the google groups
forum https://groups.google.com/g/pypreservica

Bug reports can be raised directly on either GitHub [https://github.com/carj/pyPreservica] or on the google group forum

General questions and queries about using pyPreservica posted on the google group forum above.

Examples

Using the python console, create the entity API client object and request an Asset
(Information Object) by its unique reference and display some of its attributes.

All entities within the Preservica system have one unique reference which can be used to retrieve them.

The reference used to fetch entities (Assets, Folders) is the Preservica internal unique identifier.
This is a universally unique identifier (UUID) [https://en.wikipedia.org/wiki/Universally_unique_identifier]

You can find the reference when viewing the object metadata within Explorer. Later on we will look at how we can fetch
entities using other 3rd party external identifiers which may be more meaningful such as ISBNs DOIs etc.

To create the client object you will need valid credentials to connect to the Preservica server. See the following
section on available authentication options.

>>> from pyPreservica import *
>>> client = EntityAPI()
>>> client
pyPreservica version: 0.8.5 (Preservica 6.2 Compatible)
Connected to: us.preservica.com Version: 6.2.0 as test@test.com
>>> asset = client.asset("dc949259-2c1d-4658-8eee-c17b27a8823d")
>>> asset.reference
'dc949259-2c1d-4658-8eee-c17b27a8823d'
>>> asset.title
'LC-USZ62-20901'
>>> asset.parent
'ae108c8f-b058-4228-b099-6049175d2f0c'
>>> asset.security_tag
'open'
>>> asset.entity_type
<EntityType.ASSET: 'IO'>

If your credentials are valid, pyPreservica returns a client object which is the connection to the server. Printing the client
returns information about the connection such as the server and the user name etc. This can be useful to check that you are connected to
the correct system.

All entities have a parent reference attribute, for Assets this always points to the parent Folder.
For Content Objects the parent points to the Asset and for Folders it points to the parent Folder if it exists.
Folders at the root level of the repository do not have a parent and the attribute returns the special Python
value of None

This example shows how pyPreservica can be used to upload and ingest a local file, picture.tiff
into Preservica using the UploadAPI class. The tiff file will be ingested as a new Asset object inside the existing Preservica folder given
by the folder UUID.
The simple_asset_package function creates the package, in this case an XIPv6 formatted package and the upload_zip_package method
uploads it directly to the Preservica server using the S3 protocol.

>>> from pyPreservica import *

>>> client = UploadAPI()
>>> folder = "dc949259-2c1d-4658-8eee-c17b27a8823d"
>>> zip_p = simple_asset_package(preservation_file="picture.tiff", parent_folder=folder)
>>> client.upload_zip_package(zip_p)

Authentication

pyPreservica provides 4 different methods for authentication. The library requires the username and password of a
Preservica user and an optional Tenant identifier along with the server hostname.

Tip

The Tenant parameter is now optional when connecting to a Preservica 6.3 system.

1 Method Arguments

Include the user credentials as arguments to the EntityAPI Class

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="123444",
 tenant="PREVIEW", server="preview.preservica.com")

If you don’t want to include your Preservica credentials within your python script because you are sharing scripts or
using a version control system then one of the following two methods should be used.

2 Environment Variable

Export the credentials as environment variables as part of the session

$ export PRESERVICA_USERNAME="test@test.com"
$ export PRESERVICA_PASSWORD="123444"
$ export PRESERVICA_TENANT="PREVIEW"
$ export PRESERVICA_SERVER="preview.preservica.com"

$ python3

from pyPreservica import *

client = EntityAPI()

3 Properties File

Create a properties file called “credentials.properties” with the following property names
and save to the working directory

[credentials]
username=test@test.com
password=123444
tenant=PREVIEW
server=preview.preservica.com

from pyPreservica import *

client = EntityAPI()

You can create a new credentials.properties file automatically using the save_config() method

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="123444",
 tenant="PREVIEW", server="preview.preservica.com")
client.save_config()

4 Shared Secrets

pyPreservica now supports authentication using shared secrets rather than a login account username and password.
This allows a trusted external applications such as pyPreservica to acquire a Preservica API authentication token
without having to use a set of login credentials.

This option is useful if you want to provide limited API access to a 3rd party without providing login access to Preservica.

To use the shared secret authentication you need to add a secure secret key to your Preservica system.

The username, password, tenant and server attributes are used as normal, the password field now holds the shared
secret and not the users password.

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="shared-secret", tenant="PREVIEW",
 server="preview.preservica.com", use_shared_secret=True)

If you are using a credentials.properties file then

from pyPreservica import *

client = EntityAPI(use_shared_secret=True)

2 Factor Authentication

pyPreservica now supports the new 2-Factor authentication for APIs introduced with Preservica 6.8

The Preservica system should be first setup for 2-Factor authentication and the one time password key used to
seed the 2FA (HMAC-Based One-Time Password Algorithm) should be retained and used with the API.

The one time password or seed key is available to view and should be saved when setting up the 2FA for a user.
You can find the two factor seed key from the user 2FA setup page under the “Reveal Key” button at the bottom of the page.

Keep this key secret along with your account password as it will be required when authenticating the API calls.

[image: _images/2fa.PNG]
To call pyPreservica once 2-Factor authentication process has been setup, you need the username and password as normal along
with the additional two factor key.

You can pass the additional two factor key as an argument to the constructor for the API classes or use environment
variables or the credentials file.

from pyPreservica import *

client = EntityAPI(username="test@test.com", password="my-login-password", tenant="PREVIEW",
 server="preview.preservica.com", two_fa_secret_key="AJC5DEGUVM6UQ1TT")

The environment variable for holding the 2 factor seed key is called PRESERVICA_2FA_TOKEN and the credential file
property name is twoFactorToken.

$ export PRESERVICA_2FA_TOKEN=AJC5DEGUVM6UQ1TT

i.e

[credentials]
username=test@test.com
password=123444
tenant=PREVIEW
server=preview.preservica.com
twoFactorToken=AJC5DEGUVM6UQ1TT

Tip

Preservica uses time based One Time Passwords (OTP), this means the time on your local machine must match time
on the server.

SSL Certificates

pyPreservica will by default connect to servers which use the https:// protocol and will always validate certificates
when connected via https.

For Enterprise on Premise customers on secure networks, you can change the default protocol to use http:// via the constructor.

client = EntityAPI(protocol="http")

pyPreservica uses the Certifi [https://pypi.org/project/certifi/] project to provide SSL certificate validation.

Self-signed certificates used by on-premise deployments are not part of the Certifi certification authority (CA)
bundle and therefore need to be set explicitly.

The CA bundle is a file that contains root and intermediate certificates.
The end-entity certificate along with a CA bundle constitutes the certificate chain.

For on-premise deployments the trusted CAs can be specified through the REQUESTS_CA_BUNDLE
environment variable. e.g.

$ export REQUESTS_CA_BUNDLE=/usr/local/share/ca-certificates/my-server.cert

Application Logging

You can add logging to your pyPreservica scripts by simply including the following

import logging
from pyPreservica import *

logging.basicConfig(level=logging.DEBUG)

client = EntityAPI()

This will log all messages from level DEBUG or higher to standard output, i.e the console.

When logging to files, the main thing to be wary of is that log files need to be rotated regularly.
The application needs to detect the log file being renamed and handle that situation.
While Python provides its own file rotation handler, it is best to leave log rotation to dedicated tools such as logrotate.
The WatchedFileHandler will keep track of the log file and reopen it if it is rotated,
making it work well with logrotate without requiring any specific signals.

Here’s a sample implementation.

import logging
import logging.handlers
import os

from pyPreservica import *

handler = logging.handlers.WatchedFileHandler("pyPreservica.log")
formatter = logging.Formatter(logging.BASIC_FORMAT)
handler.setFormatter(formatter)
root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(handler)

client = EntityAPI()

Entity API

Making a call to the Preservica repository is very simple.

Begin by importing the pyPreservica module at the start of the Python script. You can import only the API you need or the
whole library.

To import all the pyPreservica functionality use:

from pyPreservica import *

Now, let’s create the EntityAPI client object, this can have any name, but lets call it
client to keep things simple.

client = EntityAPI()

The client object will manage the connection to the server and will be responsible for
creating the API authentication tokens as needed.

Fetching Entities (Assets, Folders & Content Objects)

The following Python code examples show how data model entities, (Assets, Folders & Content Objects)
can be returned from Preservica using their internal Preservica identifiers.

The following shows how you can fetch an Asset by its reference and then print its attributes to the screen.

from pyPreservica import *

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
print(asset.reference)
print(asset.title)
print(asset.description)
print(asset.security_tag)
print(asset.parent)
print(asset.entity_type)

We can also fetch the same attributes for both Folders

folder = client.folder("0b0f0303-6053-4d4e-a638-4f6b81768264")
print(folder.reference)
print(folder.title)
print(folder.description)
print(folder.security_tag)
print(folder.parent)
print(folder.entity_type)

and Content Objects

content_object = client.content_object("1a2a2101-6053-4d4e-a638-4f6b81768264")
print(content_object.reference)
print(content_object.title)
print(content_object.description)
print(content_object.security_tag)
print(content_object.parent)
print(content_object.entity_type)

Assets, Folders & Content Objects actually have a number of attributes in common, such as title, description etc.
Technically they are all objects of type Entity.

We can fetch any of Assets, Folders and Content Objects using the entity type and the unique reference

asset = client.entity(EntityType.ASSET, "9bad5acf-e7a1-458a-927d-2d1e7f15974d")

folder = client.entity(EntityType.FOLDER, asset.parent)

To get a list of parent Folders of an Asset all the way to the root of the repository

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")

folder = client.folder(asset.parent)
print(folder.title)
while folder.parent is not None:
 folder = client.folder(folder.parent)
 print(folder.title)

Fetching Children of Entities

The immediate children of a Folder can also be retrieved using the library.

To get all the top level or root Folders use

for root_folder in client.descendants(None):
 print(root_folder.title)

or you can leave the arguments empty:

for root_folder in client.descendants():
 print(root_folder.title)

The descendants method is a generator function.
The method behaves like an iterator, i.e. it can be used in a for loop, the advantage of this approach is that
the paging of results is taken care of automatically. If a Folder has many thousands of Assets then the method will
make multiple calls to the server. It will default to 100 items between server requests.

The performance improvement from the use of generators is the result of the lazy (on demand) generation of values,
which translates to lower memory usage.
Furthermore, you do not need to wait until all the children have been generated before you start to use them.

To get a set of the immediate children of a particular Folder use

for entity in client.descendants(folder.reference):
 print(entity.title)

To get the siblings of an Asset you can use

for entity in client.descendants(asset.parent):
 print(entity.title)

The set of entities returned may contain both Assets and other Folders.

Note

Entities within the returned set only contain the attributes (type, reference and title).
If you need the full object you have to request it from the server.

You can request the entity back without knowing exactly what type it is by using the entity() call

To fetch the full object back you can use:

for f in client.descendants():
 e = client.entity(f.entity_type, f.reference)
 print(e)

If you only need the Folders or Assets from a parent you can filter the results using a pre-defined filter.

For example the following will only return Asset objects and will ignore Folders:

for asset in filter(only_assets, client.descendants(asset.parent)):
 print(asset.title)

To return only Folder objects use:

for folders in filter(only_folders, client.descendants(asset.parent)):
 print(folders.title)

If you want all the entities below a point in the hierarchy, i.e a recursive list of all folders and Assets then you can
call all_descendants() this is also generator function which returns a lazy iterator which will make
repeated calls to the server for each page of results.

The following will return all entities within the repository from the root folders down

for e in client.all_descendants():
 print(e.title)

Warning

The code above will fetch every Asset or Folder back from the system.
This could take a long time depending on the size of the repository.

It may be more efficient to search using the ContentAPI if you are looking for particular objects in the repository.

again if you need a list of every Asset in the system you can filter using

for asset in filter(only_assets, client.all_descendants()):
 print(asset.title)

Creating new Folders

Folder objects can be created directly in the repository, the create_folder() function takes 3
mandatory parameters, folder title, description and security tag.

new_folder = client.create_folder("title", "description", "open")
print(new_folder.reference)

This will create a folder at the top level of the repository. You can create child folders by passing the
reference of the parent as the last argument.

new_folder = client.create_folder("title", "description", "open", folder.reference)
print(new_folder.reference)
assert new_folder.parent == folder.reference

Adding Physical Assets

Preservica supports the creation of intellectual entities which correspond to physical objects. These are similar to
regular assets, but they do not point to digital files like regular assets.

To use Physical Assets the system needs a system property set to active the functionality, this can be done by the
Preservica help desk.

parent = client.folder("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
physical_asset = client.add_physical_asset("title", "description", parent, "open")
print(physical_asset.reference)

Physical assets support 3rd party identifiers, thumbnails and descriptive metadata in the same way as regular assets.

client.add_identifier(physical_asset, "ISBN", "978-3-16-148410-0")
client.add_thumbnail(physical_asset, "icon.png")

Updating Entities

We can update either the title or description attribute for Assets,
Folders and Content Objects using the save() method

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
asset.title = "New Asset Title"
asset.description = "New Asset Description"
asset = client.save(asset)

folder = client.folder("0b0f0303-6053-4d4e-a638-4f6b81768264")
folder.title = "New Folder Title"
folder.description = "New Folder Description"
folder = client.save(folder)

content_object = client.content_object("1a2a2101-6053-4d4e-a638-4f6b81768264")
content_object.title = "New Content Object Title"
content_object.description = "New Content Object Description"
content_object = client.save(content_object)

This method can also be used to set the Type of an asset or folder. By default Information objects have a type “Asset”
and Structural objects have a type “Folder”. You can use the API to change these defaults for example you may want to
use the type field to set the level of description of a Structural object to “Fonds” or “Series” etc.

To change the type use the custom_type attribute on the object, e.g.

folder = client.folder("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
folder.custom_type = "Series"
folder = client.save(folder)

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
asset.custom_type = "Manuscript"
asset = client.save(asset)

If you want to change the type back, just set the value to None

asset = client.asset("9bad5acf-e7a1-458a-927d-2d1e7f15974d")
asset.custom_type = None
asset = client.save(asset)

Security Tags

To change the security tag on an Asset or Folder we have a separate API. Since this may be a long running process.
You can choose either a asynchronous (non-blocking) call which returns immediately or synchronous (blocking call) which
waits for the security tag to be changed before returning.

This is the asynchronous call which returns immediately returning a process id

pid = client.security_tag_async(entity, new_tag)

You can determine the current status of the asynchronous call by passing the argument to get_async_progress

status = client.get_async_progress(pid)

The synchronous version will block until the security tag has been updated on the entity.
This call does not recursively change entities within a folder.
It only applies to the named entity passed as an argument.

entity = client.security_tag_sync(entity, new_tag)

3rd Party External Identifiers

3rd party or external identifiers are a useful way to provide additional names or identities to objects to
provide an alternate way of accessing them.
For example if you are synchronising metadata between an external metadata catalogue and Preservica adding the catalogue
identifiers to the Preservica objects allows the catalogue to query Preservica using its own ids.

Each Preservica entity can hold as many external identifiers as you need.

Note

Adding, Updating and Deleting external identifiers is only available in version 6.1 and above

We can add external identifiers to either Assets, Folders or Content Objects. External identifiers have a name or type
and a value. External identifiers do not have to be unique in the same way as internal identifiers.
The same external identifiers can be added to multiple entities to form sets of objects.

asset = client.asset("9bad5acf-e7ce-458a-927d-2d1e7f15974d")
client.add_identifier(asset, "ISBN", "978-3-16-148410-0")
client.add_identifier(asset, "DOI", "https://doi.org/10.1109/5.771073")
client.add_identifier(asset, "URN", "urn:isan:0000-0000-2CEA-0000-1-0000-0000-Y")

Fetch external identifiers on an entity. This call returns a set of tuples (identifier_type, identifier_value)

identifiers = client.identifiers_for_entity(folder)
for identifier in identifiers:
 identifier_type = identifier[0]
 identifier_value = identifier[1]

You can search the repository for entities with matching external identifiers. The call returns a set of objects
which may include any type of entity.

for e in client.identifier("ISBN", "978-3-16-148410-0"):
 print(e.entity_type, e.reference, e.title)

Note

Entities within the set only contain the attributes (type, reference and title). If you need the full object you have to request it.

For example

for ident in client.identifier("DOI", "urn:nbn:de:1111-20091210269"):
 entity = client.entity(ident.entity_type, ident.reference)
 print(entity.title)
 print(entity.description)

To delete identifiers attached to an entity

client.delete_identifiers(entity)

Will delete all identifiers on the entity

client.delete_identifiers(entity, identifier_type="ISBN")

Will delete all identifiers which have type “ISBN”

client.delete_identifiers(entity, identifier_type="ISBN", identifier_value="978-3-16-148410-0")

Will only delete identifiers which match the type and value

Descriptive Metadata

You can query an entity to determine if it has any attached descriptive metadata using the metadata attribute.
This returns a dictionary object the dictionary key is a url which can be used to the fetch metadata
and the value is the schema name

for url, schema in entity.metadata.items():
 print(url, schema)

The descriptive XML metadata document can be returned as a string by passing the key of the map (url)
to the metadata() method

for url in entity.metadata:
 xml_string = client.metadata(url)

An alternative is to call the metadata_for_entity directly

xml_string = client.metadata_for_entity(entity, "https://person.org/person")

this will fetch the first metadata document which matches the schema argument on the entity

If you need all the descriptive XML fragments attached to an Asset or Folder you can call all_metadata
this is a Generator which returns a Tuple containing the schema as the first item and the xml document in the second.

for metadata in client.all_metadata(entity):
 schema = metadata[0]
 xml_string = metadata[1]

Metadata can be attached to entities either by passing an XML document as a string

folder = entity.folder("723f6f27-c894-4ce0-8e58-4c15a526330e")

xml = "<person:Person xmlns:person='https://person.org/person'>" \
 "<person:Name>Bob Smith</person:Name>" \
 "<person:Phone>01234 100 100</person:Phone>" \
 "<person:Email>test@test.com</person:Email>" \
 "<person:Address>Abingdon, UK</person:Address>" \
 "</person:Person>"

folder = client.add_metadata(folder, "https://person.org/person", xml)

or by reading the metadata from a file

with open("DublinCore.xml", 'r', encoding="utf-8") as md:
 asset = client.add_metadata(asset, "http://purl.org/dc/elements/1.1/", md)

Adding descriptive metadata may change the namespace prefix values, this does not change
the meaning of the XML document as the prefix values are arbitrary labels.
XML namespace prefixes themselves are arbitrary; it’s only through their binding to a full
XML namespace name that they derive their significance.

If you want to preserve the namespace prefix you can add the following to the start of your Python scripts

xml.etree.ElementTree.register_namespace("person", "https://person.org/person")

This will associate the namespace prefix “person” with the actual XML namespace

Descriptive metadata can also be updated to amend values or change the document structure
To update an existing metadata document call

client.update_metadata(entity, schema, xml_string)

For example the following python fragment appends a new element to an existing document.

folder = client.folder("723f6f27-c894-4ce0-8e58-4c15a526330e") # call into the API

for url, schema in folder.metadata.items():
 if schema == "https://person.org/person":
 xml_string = client.metadata(url) # call into the API
 xml_document = ElementTree.fromstring(xml_string)
 postcode = ElementTree.Element('{https://person.org/person}Postcode')
 postcode.text = "OX14 3YS"
 xml_document.append(postcode)
 xml_string = ElementTree.tostring(xml_document, encoding='UTF-8').decode("utf-8")
 client.update_metadata(folder, schema, xml_string) # call into the API

Relationships Between Entities

Preservica allows arbitrary relationships between entities such as Assets and Folders.
These relationships appear in the Preservica user interface as links from one entity to another.
All entities have existing vertical parent child relationships which determine the level of description for an asset.
These relationships are additional relationships which relate different entities across the repository.

For example relationships may be used to link different editions of the same work,
or a translation of an existing document etc.

Any type of relationship is supported, for example The Dublin Core Metadata Initiative provide a set of standard relationships between entities,
and these have been provided as part of the Relationship class, but any text string is allowed for the relationship type.

>>>Relationship.DCMI_isVersionOf
http://purl.org/dc/terms/isVersionOf

>>>Relationship.DCMI_isReplacedBy
http://purl.org/dc/terms/isReplacedBy

Relationships are created between two entities A and B and have a type, for example;

A isVersionOf B.

This is a relationship from A to B. You can also create links going in the other direction and have bi-directional links between the same assets.
For example;

A isVersionOf B and B hasVersion A.

To create a relationship between entities use the add_relation method.

A_asset = client.asset("de1c32a3-bd9f-4843-a5f1-46df080f83d2")
B_asset = client.asset("683f9db7-ff81-4859-9c03-f68cfa5d9c3d")

client.add_relation(A_asset, Relationship.DCMI_isVersionOf, B_asset)
client.add_relation(B_asset, Relationship.DCMI_hasVersion, A_asset)

client.add_relation(A_asset, "Supersedes", B_asset)

Note

The Relationship API is only available when connected to Preservica version 6.3.1 or above

You can list the relationships from an asset using:

for r in client.relationships(A_asset):
 print(r)

This returns a Generator of Relationship objects.

To delete relationships between assets use:

client.delete_relationships(A_asset)

This will delete all relationships FROM the specified entity to another entity,
It does not delete relationships TO this entity.

If only need to delete a specific relationship, you can pass the relationship name as a second argument

client.delete_relationships(A_asset, "Supersedes")

Representations, Content Objects & Generations

Each Asset in Preservica contains one or more representations, such as Preservation or Access etc.
All Assets have at least one Preservation representation which is created when the Asset is ingested.

To get a list of all the representations of an Asset use representations() which returns a set of
Representation objects for the Asset.

The Representation contains the name and type and also contains a reference back to its parent Asset object.

Currently Preservica supports two representation types “Access” and “Preservation”, you can have as many representations of each type
as you need. For example a book may need two “Access” representations one containing a single PDF document and another containing multiple
JPEG images, one for each page etc.

for representation in client.representations(asset):
 print(representation.rep_type)
 print(representation.name)
 print(representation.asset.title)

Each Representation will contain one or more Content Objects.
Simple Assets contain a single Content Object per Representation whereas more complex objects such as 3D models,
books, multi-page documents may have several content objects within each Representation.

Content Objects are similar to Assets and Folders, in that they can also contain descriptive metadata and identifiers etc.
The Content Objects within a Representation do have a natural order which is preserved within the Asset and therefore
are returned as a list object.

for content_object in client.content_objects(representation):
 print(content_object.reference)
 print(content_object.title)
 print(content_object.description)
 print(content_object.parent)
 print(content_object.metadata)
 print(content_object.asset.title)

By default the title of a Content Object will probably be the name of the underlying computer file, but it does not have to be.
You can explicitly set the title and description of each Content Object within an Asset.
Preservica also supports adding external identifiers and descriptive metadata documents to Content Objects.

Each Content Object will contain a least one Generation, migrated content may have multiple Generations.

for generation in client.generations(content_object):
 print(generation.original)
 print(generation.active)
 print(generation.content_object)
 print(generation.format_group)
 print(generation.effective_date)
 print(generation.bitstreams)

Each Generation has a list of BitStreams which can be used to fetch the actual content from the server or
fetch technical metadata about the bitstream itself.

Technical information such as formats and properties can be accessed from the Generation object.
The format information is stored as dictionary object within a list as there may be multiple formats associated
with each object.

The key values for the format dictionary are: Valid, PUID, Priority, IdentificationMethod, FormatName, FormatVersion

for format in generation.formats:
 for key,value in format.items():
 print(key, value)

The technical properties of the file can be accessed via the properties attribute which is a list of dictionary
objects. Each property is a single dictionary object with the following keys: PUID, PropertyName, Value

for property in generation.properties:
 for key,value in property.items():
 print(key, value)

Generations also contain a list of bitstreams, these contain information about the bitstreams such as file size
and fixity etc.

for bitstream in generation.bitstreams:
 print(bitstream.filename)
 print(bitstream.length)
 for algorithm,value in bitstream.fixity.items():
 print(algorithm, value)

If you have an Asset object and you would like to fetch all the available bitstreams you would use something like:

for representation in client.representations(asset):
 for content_object in client.content_objects(representation):
 for generation in client.generations(content_object):
 for bitstream in generation.bitstreams:

If you only need the current or active Generations, then you can use the following short cut method
which returns each Bitstream from all the Representations and Content Objects within the Asset.

for bitstream in client.bitstreams_for_asset(asset):
 do_something(bitstream)

The actual content files can be downloaded to a disk file using bitstream_content()

This will download the bitstream to the file path given by the second argument, to save the object using
the original file name use the following:

client.bitstream_content(bitstream, bitstream.filename)

To download all the access bitstreams to the current folder you would use.

for representation in client.representations(asset):
 if representation.rep_type == "Access":
 for content_object in client.content_objects(representation):
 for generation in client.generations(content_object):
 for bitstream in generation.bitstreams:
 client.bitstream_content(bitstream, bitstream.filename)

The content files can be written to a byte array using bitstream_bytes() this
returns a BytesIO object.

byte_array = client.bitstream_bytes(bitstream)

If you need to process bitstream content as it is downloaded from Preservica pyPreservica provides the following API.

for bitstream in client.bitstreams_for_asset(asset):
 for chunk in client.bitstream_chunks(bitstream):
 doSomeThing(chunk)

This function returns a Generator which allows the client to process parts of the file as its downloading.

The method also allows a second argument which defines the size of chunk returned.

chunk_size8k = 8*1024
for bitstream in client.bitstreams_for_asset(asset):
 for chunk in client.bitstream_chunks(bitstream, chunk_size8k):
 doSomeThing(chunk)

Since version Preservica 6.12 the API allows new Access representations to be added to an existing Asset.
This allows organisations to migrate content outside of Preservica or add new access versions after the preservation
versions have been ingested.

To add a new Access representation to an existing Asset call add_access_representation and pass the Asset
and a new content file. The function returns a process id which can be used to track the status of the ingest.

The Preservica tenancy requires the post.new.representation.feature flag to be set.

asset = client.asset("723f6f27-c894-4ce0-8e58-4c15a526330e")
pid = client.add_access_representation(asset, access_file="access.jpg")

Integrity Check History

You can request the history of all integrity checks which have been carried out on a bitstream

for bitstream in generation.bitstreams:
 for check in client.integrity_checks(bitstream):
 print(check)

The list of returned checks includes both full and quick integrity checks.

Note

This call does not start a new check, it only returns information about previous checks.

Moving Entities

We can move entities between folders using the move call

client.move(entity, dest_folder)

Where entity is the object to move either an Asset or Folder and the second argument is
destination folder where the entity is moved to.

Folders can be moved to the root of the repository by passing None as the second argument.

entity = client.move(folder, None)

The move() call is an alias for move_sync() which is a synchronous (blocking call)

entity = client.move_sync(entity, dest_folder)

An asynchronous (non-blocking) version is also available which returns a progress id.

pid = client.move_async(entity, dest_folder)

You can determine the completed status of the asynchronous move call by passing the
argument to get_async_progress

status = client.get_async_progress(pid)

Deleting Entities

You can initiate and approve a deletion request using the API.

Note

Deletion is a two stage process within Preservica and requires two distinct sets of credentials.
To use the delete functions you must be using the “credentials.properties” authentication method.

Note

The Deletion API is only available when connected to Preservica version 6.2 or above

Add manager.username and manager.password to the credentials file.

[credentials]
username=
password=
server=
tenant=
manager.username=
manager.password=

Deleting an asset

asset_ref = client.delete_asset(asset, "operator comments", "supervisor comments")
print(asset_ref)

Deleting a folder

folder_ref = client.delete_folder(folder, "operator comments", "supervisor comments")
print(folder_ref)

Warning

This API call deletes entities within the repository, it both initiates and approves the deletion request
and therefore must be used with care.

Finding Updated Entities

We can query Preservica for entities which have changed over the last n days using

for e in client.updated_entities(previous_days=30):
 print(e)

The argument is the number of previous days to check for changes. This call does paging internally.

Downloading Files

The pyPreservica library also provides a web service call which is part of the content API which allows downloading of digital
content directly without having to request the Representations and Generations first.
This call is a short-cut to request the Bitstream from the latest Generation of the first Content Object in the Access
Representation of an Asset. If the asset does not have an Access Representation then the
Preservation Representation is used.

For very simple assets which comprise a single digital file in a single Representation
then this call will probably do what you expect.

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
filename = client.download(asset, "asset.jpg")

For complex multi-part assets which have been through preservation actions it may be better to use the data model
and the bitstream_content() function to fetch the exact bitstream you need.

Events on Specific Entities

List actions performed against this entity

entity_events() returns a iterator which contains events on an entity, either an asset or folder

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
for event in client.entity_events(asset)
 print(event)

Events Across Entities

List actions performed against all entities within the repository. The event is a dict() object containing
the event attributes. This call is generator function which returns the events as needed.

for event in client.all_events():
 print(event)

Ingest Events

Return a generator of ingest events over the last n days

for ingest_event in client.all_ingest_events(previous_days=1):
 print(ingest_event)

Asset and Folder Thumbnail Images

You can now add and remove icons on Assets and Folders using the API.
The icons will be displayed in the Explorer and Universal Access interfaces.

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
client.add_thumbnail(folder, "../my-icon.png")

client.remove_thumbnail(folder)

and for assets

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
client.add_thumbnail(asset, "../my-icon.png")

client.remove_thumbnail(asset)

We also have a function to fetch the thumbnail image for an asset or folder

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
filename = client.thumbnail(asset, "thumbnail.png")

You can specify the size of the thumbnail by passing a second argument

asset = client.asset("edf403d0-04af-46b0-ab21-e7a620bfdedf")
filename = client.thumbnail(asset, "thumbnail.png", Thumbnail.LARGE) ## 400×400 pixels
filename = client.thumbnail(asset, "thumbnail.png", Thumbnail.MEDIUM) ## 150×150 pixels
filename = client.thumbnail(asset, "thumbnail.png", Thumbnail.SMALL) ## 64×64 pixels

Replacing Content Objects

Preservica now supports replacing individual Content Objects within an Asset. The use case here is you have uploaded
a large digitised object such as book and you subsequently discover that a page has been digitised incorrectly.
You would like to replace a single page (Content Object) without having to delete and re-ingest the complete Asset.

The non-blocking (asynchronous) API call will replace the last active Generation of the Content Object

content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
file = "C:/book/page421.tiff"
pid = client.replace_generation_async(content_object, file)

This will return a process id which can be used to monitor the replacement workflow using

status = client.get_async_progress(pid)

By default the API will generate a new fixity value on the client using the same fixity algorithm as the original Generation you are replacing.
If you want to use a different fixity algorithm or you want to use a pre-calculated or existing fixity value you can specify the
algorithm and value.

content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
file = "C:/book/page421.tiff"
pid = client.replace_generation_async(content_object, file, fixity_algorithm='SHA1', fixity_value='2fd4e1c67a2d28fced849ee1bb76e7391b93eb12')

There is also an synchronous or blocking version which will wait for the replace workflow to complete before returning
back to the caller.

content_object = client.content_object('0f2997f7-728c-4e55-9f92-381ed1260d70')
file = "C:/book/page421.tiff"
workflow_status = client.replace_generation_sync(content_object, file)

Export OPEX Package

pyPreservica allows clients to request a full package export from the system by folder or asset,
this will start an export workflow and download the resulting dissemination package when the export workflow has completed.

The resulting package will be a zipped OPEX formatted package containing the digital content and metadata.
The export_opex API is a blocking call which will wait for the export workflow to complete before downloading the package.

folder = client.folder('0f2997f7-728c-4e55-9f92-381ed1260d70')
opex_zip = client.export_opex(folder)

The output is the name of the downloaded zip file in the current working directory.

By default the OPEX package includes metadata, digital content with the latest active generations
and the parent hierarchy.

The API can be called on either a folder or a single asset.

asset = client.asset('1f2129f7-728c-4e55-9f92-381ed1260d70')
opex_zip = client.export_opex(asset)

The call also takes the following optional arguments

	IncludeContent “Content” or “NoContent”

	IncludeMetadata “Metadata” or “NoMetadata” or “MetadataWithEvents”

	IncludedGenerations “LatestActive” or “AllActive” or “All”

	IncludeParentHierarchy “true” or “false”

e.g.

folder = client.folder('0f2997f7-728c-4e55-9f92-381ed1260d70')
opex_zip = client.export_opex(folder, IncludeContent="Content", IncludeMetadata="MetadataWithEvents")

Content API

pyPreservica now contains interfaces to the content API which supports searching the repository.

https://us.preservica.com/api/content/documentation.html

The content API is a readonly interface which returns json documents rather than XML and which has some duplication
with the entity API, but it does contain search capabilities.

The content API client is created using

from pyPreservica import *

client = ContentAPI()

object-details

Get the details for a Asset or Folder as a Python dictionary object containing CMIS attributes

client = ContentAPI()

client.object_details("IO", "uuid")
client.object_details("SO", "uuid")

e.g.

from pyPreservica import *

client = ContentAPI()

details = client.object_details("IO", "de1c32a3-bd9f-4843-a5f1-46df080f83d2")
print(details['name'])

or

from pyPreservica import *

client = ContentAPI()

details = client.object_details(EntityType.ASSET, "de1c32a3-bd9f-4843-a5f1-46df080f83d2")
print(details['name'])

indexed-fields

Get a list of all the indexed metadata fields within the Preservica search engine. This includes the default
xip.* fields and any custom indexes which have been created through custom index files.

client = ContentAPI()

client.indexed_fields():

Search

Search the repository using a single expression which matches on any indexed field.

client = ContentAPI()

client.simple_search_csv()

Searches for everything and writes the results to a csv file called “search.csv”, by default the csv
columns contain reference, title, description, document_type, parent_ref, security_tag.

You can pass the query term as the first argument (% is the wildcard character) and
the csv file name as the second argument.

client = ContentAPI()

client.simple_search_csv("%", "everything.csv")

client.simple_search_csv("Oxford", "oxford.csv")

client.simple_search_csv("History of Oxford", "history.csv")

The last argument is an optional list of indexed fields which are the csv file columns.

client = ContentAPI()

metadata_fields = ["xip.reference", "xip.title", "xip.description", "xip.document_type", "xip.parent_ref", "xip.security_descriptor"]
client.simple_search_csv("%", "results.csv", metadata_fields)

or to include everything except the full text index value

client = ContentAPI()

everything = list(filter(lambda x: x != "xip.full_text", client.indexed_fields()))
client.simple_search_csv("%", "results.csv", everything)

There is an equivalent call which does not write the output to CSV, but returns a generator of dictionary objects.
This is useful if you want to process the results within the script and not generate a report directly.

client = ContentAPI()

for hit in client.simple_search_list("History of Oxford"):
 print(hit)

and

client = ContentAPI()

metadata_fields = ["xip.reference", "xip.title", "xip.description", "xip.document_type", "xip.parent_ref", "xip.security_descriptor"]
for hit in client.simple_search_list("History of Oxford", metadata_fields):
 print(hit['xip.title'])

If you want to do searches with advanced filter terms then the following calls can be used.
These calls use a Python dictionary to allow the caller to specify filter values on the indexed terms.

client = ContentAPI()

filters = {"dc.rights": "Public Domain", "xip.security_descriptor": "public"}
for hit in client.search_index_filter_list(query="History of Oxford", filter_values=filters):
 print(hit)

If you want to generate a report which can be opened directly in Excel, the use the csv version.

client = ContentAPI()

filters = {"oai_dc.contributor": "*", "xip.security_descriptor": "public"}
client.search_index_filter_csv(query="History of Oxford", csv_file="my-report.csv", filter_values=filters)

The special filter value “*” is used to filter indexes which have a value, i.e. are values are not empty or missing.
The filter value “%” is used to specify any value including empty values.

For example to create a report on the security tags of all assets within a folder you can use

client = ContentAPI()

filters = {"xip.title": "%", "xip.description": "%", "xip.security_descriptor": "*", "xip.parent_ref": "48c79abd-01f3-4b77-8132-546a76e0d337"}
client.search_index_filter_csv(query="%", csv_file="security.csv", filter_values=filters)

Search Progress

Searching across a large Preservica repository is very quick, but returning very large datasets back to the client
can be slow. To avoid putting undue load on the server pyPreservica will request a single page of results at a time for
each server request.

If you are using the `simple_search_csv` or `search_index_filter_csv` functions which write directly to a csv
file then it can be difficult to monitor the report generation progress.

To allow allow monitoring of search result downloads, you can add a callback to the search client.
The callback class will be called for every page of search results returned to the client. The value passed to the
callback contains the total number of search hits for the query and the current number of results processed.

Preservica provides a default callback

class ReportProgressCallBack:
 def __init__(self):
 self.current = 0
 self.total = 0
 self._lock = threading.Lock()

 def __call__(self, value):
 with self._lock:
 values = value.split(":")
 self.total = int(values[1])
 self.current = int(values[0])
 percentage = (self.current / self.total) * 100
 sys.stdout.write("\r%s / %s (%.2f%%)" % (self.current, self.total, percentage))
 sys.stdout.flush()

To use the default callback in your scripts include the following line

client.search_callback(client.ReportProgressCallBack())

Reporting Examples

Create a spreadsheet containing all Assets within the repository

Generate a CSV report on all assets within the system, spreadsheet columns include asset title, description,
security tag etc

from pyPreservica import *

client = ContentAPI()

if __name__ == '__main__':
 metadata_fields = {
 "xip.reference": "*", "xip.title": "", "xip.description": "", "xip.document_type": "IO", "xip.parent_ref": "",
 "xip.security_descriptor": "*",
 "xip.identifier": "", "xip.bitstream_names_r_Preservation": ""}

 client.search_callback(client.ReportProgressCallBack())

 client.search_index_filter_csv("%", "assets.csv", metadata_fields)

Create a spreadsheet containing all Assets and Folders within the repository

from pyPreservica import *

client = ContentAPI()

if __name__ == '__main__':
 metadata_fields = {
 "xip.reference": "*", "xip.title": "", "xip.description": "", "xip.document_type": "*", "xip.parent_ref": "",
 "xip.security_descriptor": "*",
 "xip.identifier": "", "xip.bitstream_names_r_Preservation": ""}

 client.search_callback(client.ReportProgressCallBack())

 client.search_index_filter_csv("%", "all_objects.csv", metadata_fields)

Create a spreadsheet containing all Assets and Folders underneath a specific folder

from pyPreservica import *

content = ContentAPI()
entity = EntityAPI()

folder = entity.folder(sys.argv[1])

print(f"Searching inside folder {folder.title}")

if __name__ == '__main__':
 metadata_fields = {
 "xip.reference": "*", "xip.title": "", "xip.description": "", "xip.document_type": "*", "xip.parent_hierarchy": f"{folder.reference}",
 "xip.security_descriptor": "*",
 "xip.identifier": "", "xip.bitstream_names_r_Preservation": ""}

 content.search_callback(content.ReportProgressCallBack())

 content.search_index_filter_csv("%", "assets.csv", metadata_fields)

User Security Tags

You can get a list of available security tags for the current user by calling:

client = ContentAPI()

client.user_security_tags()

Upload API

PyPreservica provides some limited capabilities for the Upload Content API

https://developers.preservica.com/api-reference/3-upload-content-s3-compatible

The Upload API can be used for creating, uploading and automatically starting an ingest workflows with pre-created packages.
The Package can be either a native v5 SIP as created from a tool such as the SIP Creator or a native v6 SIP created
manually.
Zipped OPEX packages are also supported. https://developers.preservica.com/documentation/open-preservation-exchange-opex

The package can also be a regular zip file containing just folders and files with or without simple .metadata files.

Uploading Packages

The upload API client is created using

from pyPreservica import *

upload = UploadAPI()

Once you have a client you can use it to upload packages.

upload.upload_zip_package("my-package.zip")

Will upload the local zip file and start an ingest workflow if one is enabled.

The zip file can be any of the following:

	Zipped Native XIPv5 Package (i.e. created from the SIP Creator)

	Zipped Native XIPv6 Package (see below)

	Zipped OPEX Package

	Zipped Folder

Note

A Workflow Context must be active for the package upload requests to be successful.

If the package is a simple zipped folder without a manifest XML then you will want to pass information to the
ingest to specify which folder the content should be ingested into.
To specify the parent folder of the ingest pass a folder object as the second argument.

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
upload.upload_zip_package(path_to_zip_package="my-package.zip", folder=folder)

For large packages it is more reliable to send the submission via the AWS S3 transfer bucket connected to a ingest workflow.
The available transfer buckets are shown on the Preservica administration sources tab.
The ingest can then be triggered automatically once the submission is saved to the S3 transfer bucket.

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
bucket = "com.preservica.<Tenent-ID>.upload"
upload.upload_zip_package_to_S3(path_to_zip_package="my-large-package.zip", bucket_name=bucket, folder=folder)

Note

This upload method is only available to AWS users.

If your Preservica system is deployed on Azure you can use:

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
bucket = "com.preservica.<Tenent-ID>.upload"
upload.upload_zip_package_to_Azure(path_to_zip_package="my-large-package.zip", container_name=bucket, folder=folder)

If you are writing client code which could be used on both AWS or Azure platforms than you can use the following
which will upload into a monitored cloud location on either platform

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")
bucket = "com.preservica.<Tenent-ID>.upload"
upload.upload_zip_to_Source(path_to_zip_package="my-large-package.zip", container_name=bucket, folder=folder)

Monitoring Upload Progress

The upload_zip_package function accepts an optional Callback parameter.
The parameter references a class that pyPreservica invokes intermittently during the transfer operation.

pyPreservica executes the class’s __call__ method. For each invocation, the class is passed the
number of bytes transferred up to that point. This information can be used to implement a progress monitor.

The following Callback setting instructs pyPreservica to create an instance of the UploadProgressCallback class.
During the upload, the instance’s __call__ method will be invoked intermittently.

from pyPreservica import UploadProgressCallback
my_callback=UploadProgressCallback("my-package.zip")
client.upload_zip_package(path_to_zip_package="my-package.zip", folder=folder, callback=my_callback)

The default pyPreservica UploadProgressCallback looks like

import os
import sys
import threading

class ProgressPercentage(object):
 def __init__(self, filename):
 self._filename = filename
 self._size = float(os.path.getsize(filename))
 self._seen_so_far = 0
 self._lock = threading.Lock()

 def __call__(self, bytes_amount):
 with self._lock:
 self._seen_so_far += bytes_amount
 percentage = (self._seen_so_far / self._size) * 100
 sys.stdout.write("\r%s %s / %s (%.2f%%)" % (self._filename, self._seen_so_far, self._size, percentage))
 sys.stdout.flush()

Creating Packages

The UploadAPI module also contains functions for creating XIPv6 packages directly from content files.

To create a package containing a single preservation Content Object (file) as part of an Asset which will
be a child of specified folder

package_path = simple_asset_package(preservation_file="my-image.tiff", parent_folder=folder)

The output is a path to the zip file which can be passed directly to the upload_zip_package method

client.upload_zip_package(path_to_zip_package=package_path)

By default the Asset title and description will be taken from the file name.

If you don’t specify an export folder the new package will be created in the system TEMP folder.
If you want to override this behaviour and explicitly specify the output folder for the package
use the export_folder argument

package_path = simple_asset_package(preservation_file="my-image.tiff", parent_folder=folder,
 export_folder="/mnt/export/packages")

You can specify the Asset title and description using additional keyword arguments.

package_path = simple_asset_package(preservation_file="my-image.tiff", parent_folder=folder,
 Title="Asset Title", Description="Asset Description")

You can also add a second Access content object to the asset. This will create an asset
with two representations (Preservation & Access)

package_path = simple_asset_package(preservation_file="my-image.tiff", access_file="my-image.jpg"
 parent_folder=folder)

It is possible to configure the asset within the package using the following additional keyword arguments.

	Title Asset Title

	Description Asset Description

	SecurityTag Asset Security Tag

	CustomType Asset Type

	Preservation_Content_Title Content Object Title of the Preservation Object

	Preservation_Content_Description Content Object Description of the Preservation Object

	Access_Content_Title Content Object Title of the Access Object

	Access_Content_Description Content Object Description of the Access Object

	Preservation_Generation_Label Generation Label for the Preservation Object

	Access_Generation_Label Generation Label for the Access Object

	Asset_Metadata Dictionary of metadata schema/documents to add to the Asset

	Identifiers Dictionary of Asset identifiers

	Preservation_files_fixity_callback Fixity generation callback for preservation files

	Access_files_fixity_callback Fixity generation callback for access files

The package will contain an asset with the following structure.

[image: _images/simple_asset_package.png]
For example to add descriptive metadata and two 3rd party identifiers use the following

metadata = {"http://purl.org/dc/elements/1.1/": "dublin_core.xml"}
identifiers = {"DOI": "doi:10.1038/nphys1170", "ISBN": "978-3-16-148410-0"}
package_path = simple_asset_package(preservation_file="my-image.tiff", access_file="my-image.jpg"
 parent_folder=folder, Asset_Metadata=metadata, Identifiers=identifiers)

More complex assets can also be defined which contain multiple Content Objects,
for example a book with multiple pages etc.

The complex_asset_package function takes a collection of preservation files and an optional collection of access files.
It creates a single asset package with multiple content objects per Representation.

Use a list collection to preserve the ordering of the content objects within the asset. For example the first
page of a book should be the first item added to the list.

preservation_files = list()
preservation_files.append("page-1.tiff")
preservation_files.append("page-2.tiff")
preservation_files.append("page-3.tiff")

access_files = list()
access_files.append("book.pdf")

package_path = complex_asset_package(preservation_files_list=preservation_files, access_files_list=access_files,
 parent_folder=folder)

Creating Packages with Multiple Representations

If you have a single preservation and access representation then complex_asset_package will create the package you need.
If you have more than one representation of each type than you need to use generic_asset_package

generic_asset_package can be used to create as many representations as required.

generic_asset_package works the same way as complex_asset_package but instead of a list of content objects
you pass a dictionary, the key is the representation name and the value is the list of files.

preservation_representations = dict()
preservation_representations["Master"] = ["page-1.tiff", "page-2.tiff"," page-3.tiff"]
preservation_representations["BW Master"] = ["page-1.jp2", "page-2.jp2"," page-3.jp2"]
preservation_representations["Greyscale Master"] = ["page-1.tiff", "page-2.tiff"," page-3.tiff"]

access_representations = dict()
access_representations["Multi-Page Access"] = ["page-1.jpg", "page-2.jpg"," page-3.jpg"]
access_representations["Single Page Access"] = ["book.pdf"]

package_path = generic_asset_package(preservation_files_dict=preservation_representations, access_files_dict=access_representations, parent_folder=folder)

The additional keyword arguments used by complex_asset_package such as Title, Description etc are still available.

Preservica will render the first access representation, so the viewer you want to use needs to be the first entry in the dict.
For example above if you want to use the multi-page book viewer as the default renderer, make “Multi-Page Access” the first entry,
if you want the PDF viewer to be the default renderer, then make “Single Page Access” the first dict entry.

Custom Fixity Generation

By default the simple_asset_package and complex_asset_package routines will create packages which contain
SHA1 [https://en.wikipedia.org/wiki/SHA-1] fixity values.

You can override this default behaviour through the use of the callback options. The pyPreservica library provides
default callbacks for SHA-1, SHA256 & SHA512

	Sha1FixityCallBack

	Sha256FixityCallBack

	Sha512FixityCallBack

To use one of the default callbacks

package_path = complex_asset_package(preservation_files_list=preservation_files, access_files_list=access_files,
 parent_folder=folder, Preservation_files_fixity_callback=Sha512FixityCallBack())

If you want to re-use existing externally generated fixity values for performance or integrity reasons then you can create a custom callback.
The callback takes the filename and the path of the file which should have its fixity measured and should return a tuple containing the algorithm name
and fixity value

class MyFixityCallback:
 def __call__(self, filename, full_path):
 ...
 ...
 return "SHA1", value

For example if your fixity values are stored in a spreadsheet (csv) files you may want something similar to:

class CSVFixityCallback:

 def __init__(self, csv_file):
 self.csv_file = csv_file

 def __call__(self, filename, full_path):
 with open(self.csv_file, mode='r', encoding='utf-8-sig') as csv_file:
 csv_reader = csv.DictReader(csv_file, delimiter=',')
 for row in csv_reader:
 if row['filename'] == filename
 fixity_value = row['file_checksum_sha256']
 return "SHA256", fixity_value.lower()
 sha = FileHash(hashlib.sha256)
 return "SHA256", sha(full_path)

Bulk Package Creation

The simple_asset_package and complex_asset_package functions create a submission package containing a single Asset.
If you have many single file assets to ingest you can call these functions for each file.

For example, the code fragment below will create a single Asset package for every jpg file in a directory and upload each package to Preservica.

path = "C:\\Jpeg-Images\\"

images = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith("jpg")]
files = [os.path.join(path, o) for o in images]

for file in files:
 package_path = simple_asset_package(preservation_file=file, parent_folder=folder)
 client.upload_zip_package(path_to_zip_package=package_path)

This works fine, but this will create a package for each file and an ingest workflow for each file.
A more efficient way is to create a single package which contains multiple assets.

To create a multiple asset package use multi_asset_package, this takes a list of files and creates a package containing
multiple assets which will be ingested into the same folder.

The equivalent to the code above would be:

path = "C:\\Jpeg-Images\\"

images = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith("jpg")]
files = [os.path.join(path, o) for o in images]

package_path = multi_asset_package(preservation_file=files, parent_folder=folder)
client.upload_zip_package(path_to_zip_package=package_path)

Package Examples

The following code samples show different ways of ingesting data into Preservica for different use cases.

Ingest a single digital file as an asset, with a progress bar during upload, delete the package after upload has completed.

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

image = "./data/file.jpg"

Create a simple package with 1 Asset and Representation and 1 CO
package = simple_asset_package(preservation_file=image, parent_folder=folder)

Send the package via the S3 ingest bucket
use the bucket name attached to the ingest workflow you want to use

bucket = "com.preservica.upload"

callback=UploadProgressCallback(package)

upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, callback=callback, delete_after_upload=True)

Ingest a single digital file as an asset, with a custom asset Title and Description

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

image = "./data/file.jpg"

title = "The Asset Title"
description = "The Asset Description"

Create a simple package with 1 Asset and Representation and 1 CO
package = simple_asset_package(preservation_file=image, parent_folder=folder, Title=title, Description=description)

Send the package via the S3 ingest bucket
use the bucket name attached to the ingest workflow you want to use
bucket = "com.preservica.upload"
callback=UploadProgressCallback(package)
upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, callback=callback, delete_after_upload=True)

Ingest each jpeg file in a directory as an individual asset

import glob
from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

directory = "./data/*.jpg"

Create simple packages with 1 Asset and 1 CO for every file in the folder
bucket = "com.preservica.upload"
for image in glob.glob(directory):
 package = simple_asset_package(preservation_file=image, parent_folder=folder)
 upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket)

Ingest a single digital file as an asset with a 3rd party identifier and custom metadata

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

image = "./data/file.jpg"

Set the Asset Title and Description

title = "My Assst Title"
description = "My Assst Description"

Add 3rd Party Identifiers

identifiers = {"ISBN": "123-4567-938"}

Add Description metadata

metadata = {"https://www.example.com/metadata": "./metadata/dc.xml"}

package = simple_asset_package(preservation_file=image, parent_folder=folder,
 Title=title, Description=description, Identifiers=identifiers, Asset_Metadata=metadata)

bucket = "com.preservica.upload"

upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, delete_after_upload=True)

Create a single Asset with 2 Representations (Preservation and Access) each Representation has 1 Content Object

from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

access_image = "./jpeg/file.jpg"
preservation_image = "./tiff/file.tif"

package = simple_asset_package(preservation_file=preservation_image, access_file=access_image,
 parent_folder=folder)

bucket = "com.preservica.upload"
upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, delete_after_upload=True)

Create a package with 1 Asset 2 Representations (Preservation and Access) and multiple Content Objects (one for every image)

import glob
from pyPreservica import *

upload = UploadAPI()

folder = "54308774-4822-4593-a8ad-970ca511caa0"

access_images = "./data/*.jpg"
preservation_images = "./data2/*.tif"

package = complex_asset_package(preservation_files_list=glob.glob(preservation_images),
 access_files_list=glob.glob(access_images),
 parent_folder=folder)

bucket = "com.preservica.upload"
upload.upload_zip_package_to_S3(path_to_zip_package=package, bucket_name=bucket, delete_after_upload=True)

Spreadsheet Metadata

pyPreservica now provides some experimental support for working with metadata in spreadsheets.
The library provides support for generating descriptive metadata XML documents for each row in a spreadsheet, creating
an XSD schema for the XML documents and creating a custom transform for viewing the metadata in the UA portal along side
a custom search index.

Before working with the spreadsheet it should be saved as a UTF-8 CSV document within Excel.

[image: _images/excel.png]
CSV to XML works by extracting each row of a spreadsheet and creating a single XML document for each row.
The spreadsheet columns are the XML attributes.

The XML namespace and root element need to be provided. You also need to specify which column should be used to name the
XML files.

cvs_to_xml(csv_file="my-spreadsheet.csv", root_element="Metadata", file_name_column="filename", xml_namespace="https://test.com/Metadata")

This will read the my-spreadsheet.csv csv file and create a set of XML documents, one for each row in the csv file.
The XML files will be named after the value in the filename column.

The resulting XML documents will look like

<?xml version='1.0' encoding='utf-8'?>
<Metadata xmlns="https://test.com/Metadata">
 <Column1>....</Column1>
 <Column2>....</Column2>
 <Column3>....</Column3>
 <Column4>....</Column4>
</Metadata>

You can create a XSD schema for the documents by calling

cvs_to_xsd(csv_file="my-spreadsheet.csv", root_element="Metadata", xml_namespace="https://test.com/Metadata")

Which will generate a document Metadata.xsd

<?xml version='1.0' encoding='utf-8'?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="https://test.com/Metadata">
 <xs:element name="Metadata">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="Column1" />
 <xs:element type="xs:string" name="Column2" />
 <xs:element type="xs:string" name="Column3" />
 <xs:element type="xs:string" name="Column4" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

To display the resulting metadata in the UA portal you will need a CMIS transform to tell Preservica which attributes to
display. You can generate one by calling

cvs_to_cmis_xslt(csv_file="my-spreadsheet.csv", root_element="Metadata", title="My Metadata Title",
 xml_namespace="https://test.com/Metadata")

You can also auto-generate a custom search index document which will add indexes for each column in the spreadsheet

csv_to_search_xml(csv_file="my-spreadsheet.csv", root_element="Metadata",
 xml_namespace="https://test.com/Metadata")

Ingest Web Video

pyPreservica now contains the ability to ingest web video directly from video hosting sites such as YouTube and others.
To use this functionality you need to install the additional Python Project youtube_dl

$ pip install --upgrade youtube_dl

You can ingest video’s directly with only the video site URL
You also need to tell Preservica which folder the new video asset will be ingested into.

upload = UploadAPI()
client = EntityAPI()

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url="https://www.youtube.com/watch?v=4GCr9gljY7s", parent_folder=folder):

The new asset will get the title and description from youtube metadata. The asset will be given the default
security tag of “open”.

The video is downloaded from the web hosting platform to the local client running the Python script and then uploaded
to Preservica.

It will work with most sites that host video, for example using c-span.

upload = UploadAPI()
client = EntityAPI()

cspan_url = "https://www.c-span.org/video/?508691-1/ceremonial-swearing-democratic-senator-padilla"
folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url=cspan_url, parent_folder=folder):

or UK parliament

upload = UploadAPI()
client = EntityAPI()

uk_url = "https://parliamentlive.tv/event/index/b886f44b-0e65-47bc-b506-d0e805c01f4b"
folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url=uk_url, parent_folder=folder):

The asset will automatically have a title and description pulled from the original site.

You can override the default title, description and security tag with optional arguments and add 3rd party
identifiers.

upload = UploadAPI()
client = EntityAPI()

identifier_map = {"Type": "youtube.com"}

url = "https://www.youtube.com/watch?v=4GCr9gljY7s"
title = "Preservica Cloud Edition: Keeping your digital assets safe and accessible"

folder = client.folder("edf403d0-04af-46b0-ab21-e7a620bfdedf")

upload.ingest_web_video(url=url, parent_folder=folder, Identifiers=identifier_dict, Title=title, SecurityTag="public")

Ingest Twitter Feeds

To use this functionality you need to install the additional Python Project tweepy

$ pip install --upgrade tweepy

The Twitter API is authenticated, this means that unlike youtube you need a set of API credentials to read tweets even
if the tweets are public and you have a twitter account.

You can apply for API Consumer Keys (The basic ready only set is required) at:

https://developer.twitter.com/

You will need the consumer key and secret. Your twitter API keys and tokens should be guarded very carefully.

Note

Twitter no longer provides free API read access.
See: https://developer.twitter.com/

You can harvest and ingest tweets using a single call on the upload class using ingest_twitter_feed method.

You should pass the name of the twitter feed you want to crawl and the number of tweets as the first two arguments.
You also need to tell the call which folder you want the tweet assets to be ingested into.

The twitter API Consumer Keys can either be passed as arguments to the call or be specified in the credential.properties
file or an environment variable using the keys: TWITTER_CONSUMER_KEY and TWITTER_SECRET_KEY

upload = UploadAPI()

twitter_name = "Preservica"
number_tweets = 25
folder_id = "77802d22-ee48-4e46-9b29-46118246cad1"
folder = entity.folder(folder_id)

upload.ingest_twitter_feed(twitter_user=twitter_name, num_tweets=number_tweets, folder=folder, twitter_consumer_key="xxxx", twitter_secret_key="zzzz")

Crawl and ingest from a filesystem

The UploadAPI class provides a mechanism for users to crawl and ingest all digital files on a filesystem. The crawl will
replicate the on disk folder structure in Preservica.

You provide the function the path to the data to be ingested, an bucket connected to an ingest workflow and the
Preservica collection to ingest into.

upload = UploadAPI()

upload.crawl_filesystem(filesystem_path="/my/path/data", bucket_name="com.bucket",
 preservica_parent="daa88307-4a0b-4962-a5a9-6a1387f9f876")

Workflow API

The workflow API allows clients to interact with the workflow engine, you can start workflows programmatically
and monitor the workflow queue etc.

Note

The Workflow API is available for Enterprise Preservica users only

Begin by importing the pyPreservica module

from pyPreservica import *

Now, create the WorkflowAPI client

client = WorkflowAPI()

Fetching Workflow Contexts

The WorkflowAPI allows users to fetch a list of workflow contexts. A workflow context is a workflow definition
which has been configured and is ready to run.
Workflow contexts will appear in the “Manage” tab in the admin interface under the workflow type.

To fetch list of all workflow contexts by the workflow definition identifier

for workflow_context in client.get_workflow_contexts("com.preservica.core.workflow.ingest"):
 print(workflow_context.workflow_name)

To fetch a list of all workflow contexts by type:

The list of available types are:

	Ingest

	Access

	Transformation

	DataManagement

for workflow_context in client.get_workflow_contexts_by_type("Ingest"):
 print(workflow_context.workflow_name)

Fetching Workflow Instances

A workflow instance is a workflow context which has been started and has either completed or is in progress.

Return a workflow instance by its identifier

workflow_instance = client.workflow_instance(instance_id)
print(workflow_instance.workflow_context_name)
print(workflow_instance.display_state)

Return a list of all Workflow instances, you can filter on workflow state and workflow type

Workflow States

	Aborted

	Active

	Completed

	Finished_Mixed_Outcome

	Pending

	Suspended

	Unknown

	Failed

Workflow Types

	Ingest

	Access

	Transformation

	DataManagement

for workflow_instance in client.workflow_instances("Completed", "Ingest"):
 print(workflow_instance)

Starting Workflows

Once you have a workflow context setup, you can start workflows via the API.

To start the workflow pass a workflow context object as the argument

client.start_workflow_instance(workflow_context)

If a workflow requires additional arguments or you would like to override the defaults, you can pass
additional named arguments as additional parameters.

For example, to automatically start a new web crawl workflow, overriding some of the default parameters you
would use:

workflow_context = client.get_workflow_contexts("com.preservica.core.workflow.web.crawl.and.ingest")[0]

client.start_workflow_instance(workflow_context, seedUrl="preservica.com", maxDepth="8", maxHops="10")

Admin API

pyPreservica 1.2 onwards now provides interfaces to the Administration and Management API

https://eu.preservica.com/api/admin/documentation.html

Note

Administration and Management API is a system management API for repository
managers who have at least the role ROLE_SDB_MANAGER_USER

The Administration and Management API client is created using

from pyPreservica import *

client = AdminAPI()

Metadata Management (XSD Schema’s, XML Documents & XSLT Transforms)

Preservica holds XML metadata schema’s, XML templates and XSLT transforms, you can access the document stores
programmatically via the admin API.

To list all the XML templates use

from pyPreservica import *

client = AdminAPI()

client.xml_documents()

This will return a list of dictionary objects containing the template attributes, e.g.

from pyPreservica import *

client = AdminAPI()

for doc in client.xml_documents():
 print(doc['Name'])

You can access the XSD schema and XSLT templates in the same way

from pyPreservica import *

client = AdminAPI()

for schema in client.xml_schemas():
 print(schema['Name'])

from pyPreservica import *

client = AdminAPI()

for transform in client.xml_transforms():
 print(transform['Name'])

Individual xml documents can be requested via their namespace URI.

For example, to save a MODS xml template held in Preservica with a given URI to a local file, use:

from pyPreservica import *

client = AdminAPI()

with open("mods-template.xml", encoding="utf-8", mode="wt") as f:
 f.write(client.xml_document("http://www.loc.gov/mods/v3"))

This now allows you to fetch a template from Preservica, update it and add it to a submission.

admin = AdminAPI()

dublin_core_template = admin.xml_document("http://www.openarchives.org/OAI/2.0/oai_dc/")
entity_response = xml.etree.ElementTree.fromstring(dublin_core_template)
entity_response.find(".//{http://purl.org/dc/elements/1.1/}title").text = "My Asset Title"
dublin_core_metadata = xml.etree.ElementTree.tostring(entity_response).decode("utf-8")

package = simple_asset_package(preservation_file="my-image.tiff",
 Asset_Metadata={"http://www.openarchives.org/OAI/2.0/oai_dc/", dublin_core_metadata})

You can use similar code to fetch the XSD schema documents

from pyPreservica import *

client = AdminAPI()

with open("dublin-core.xsd", encoding="utf-8", mode="wt") as f:
 f.write(client.xml_schema("http://purl.org/dc/elements/1.1/"))

To fetch a transform you need to provide both an input URI and output URI

from pyPreservica import *

client = AdminAPI()

with open("ead-cmis.xslt", encoding="utf-8", mode="wt") as f:
 f.write(client.xml_transform("urn:isbn:1-931666-22-9", "http://www.w3.org/1999/xhtml"))

To add a new XML descriptive metadata template you can either pass an XML document held as a string or
a file like object. If using a file, then make sure the file descriptor is opened in binary mode.

from pyPreservica import *

client = AdminAPI()

with open("my-template.xml", mode="rb") as f:
 f.write(client.add_xml_document("my-template-name", f))

or via a string

from pyPreservica import *

client = AdminAPI()

client.add_xml_document("my-template-name", xml_document)

To delete an existing XML template use the URI identifier

from pyPreservica import *

client = AdminAPI()

client.delete_xml_document("http://purl.org/dc/elements/1.1/")

XSD Schema’s and XSLT Transforms can be added and deleted in a similar way

Using a file like object

from pyPreservica import *

client = AdminAPI()

with open("my-schema.xsd", mode="rb") as f:
 f.write(client.add_xml_schema(name="my-schema", description="", originalName="my-schema.xsd", f))

or via a string

from pyPreservica import *

client = AdminAPI()

client.add_xml_schema(name="my-schema", description="", originalName="my-schema.xsd", xml_document)

and deletion is via the URI

from pyPreservica import *

client = AdminAPI()

client.delete_xml_schema("http://purl.org/dc/elements/1.1/")

User Management

List all the users within the tenancy by their username

from pyPreservica import *

client = AdminAPI()

for username in client.all_users():
 print(username)

Fetch the full set of user details, such as full name, email address and roles

from pyPreservica import *

client = AdminAPI()

user = client.user_details(username):
print(user['FullName'])
print(user['Email'])

Create a CSV/Spreadsheet report containing details of all users within the tenancy, the report has the following columns,
UserName, FullName, Email, Tenant, Enabled, Roles

from pyPreservica import *

client = AdminAPI()

client.user_report(report_name="users.csv")

Create new user accounts

from pyPreservica import *

client = AdminAPI()

username = "admin@example.com"
roles = ['SDB_MANAGER_USER', 'SDB_INGEST_USER']

user = client.add_user(username, full_name, roles)

Delete a user from the system

from pyPreservica import *

client = AdminAPI()

client.delete_user(username)

Change the display name of a user

from pyPreservica import *

client = AdminAPI()

client.change_user_display_name(username, "New Display Name")

Security Tags

To get a list of all security tags in the system use:

from pyPreservica import *

client = AdminAPI()

tags = client.security_tags()

Note

This call may produce a different set of tags than the user_security_tags() function from the content API
which only returns security tags that the current user has available.

You can generate a report of security tag frequency usage using the pygal library for example.

import pygal
from pygal.style import BlueStyle
from pyPreservica import *

client = AdminAPI()
search = ContentAPI()
security_tags = client.security_tags()
results = {}
for tag in security_tags:
 filters = {"xip.security_descriptor": tag, "xip.document_type": "IO"}
 hits = search.search_index_filter_hits(query="%", filter_values=filters)
 results[tag] = hits

bar_chart = pygal.HorizontalBar(show_legend=False)
bar_chart.title = "Security Tag Frequency"
bar_chart.style = BlueStyle
bar_chart.x_title = "Number of Assets"
bar_chart.x_labels = results.keys()
bar_chart.add("Security Tag", results)

bar_chart.render_to_file("chart.svg")

This creates a graphical report which displays the frequency of each security tag with the ability to hover
over the values.

 Retention API

Retention API

https://eu.preservica.com/api/entity/documentation.html#/%2Fretention-policies

Retention Policies

Fetch a list of all retention policies

retention = RetentionAPI()

for policy in retention.policies():
 print(policy)

Fetch a retention policy by its name

retention = RetentionAPI()

policy = retention.policy_by_name("Standard Policy")

Create a new retention policy

retention = RetentionAPI()

args = dict()
args['Name'] = "API Created Policy"
args['Description'] = "Policy Description"
args['SecurityTag'] = "open"
args['StartDateField'] = "xip.created"
args['Period'] = "6"
args['PeriodUnit'] = "YEAR"
args['ExpiryAction'] = "REVIEW"
args['ExpiryActionParameters'] = "{\"EmailAddress\":[\"test@emailaddress1.com\",\"test@emailaddress2.com\"]}"
args['Restriction'] = "DELETE"
args['Assignable'] = bool(True)

policy = retention.create_policy(**args)

Delete a Policy

retention = RetentionAPI()

retention.delete_policy(policy.reference)

Retention Assignments

Assign a policy onto an asset

client = EntityAPI()
retention = RetentionAPI()

asset = client.asset("c365634e-9fcc-4ea1-b47f-077f55df9d64")

policy = retention.policy_by_name("Standard Policy")

retention_assignment = retention.add_assignments(asset, policy)

List the retention assignments on a asset

client = EntityAPI()
retention = RetentionAPI()

asset = client.asset("c365634e-9fcc-4ea1-b47f-077f55df9d64")

assignments = retention.assignments(asset)

Remove a policy assignment from an asset

client = EntityAPI()
retention = RetentionAPI()

retention_assignment = retention.remove_assignments(assignment)

 Registry API

Registry API

PyPreservica provides a python interface for using the Preservation Action Registry API

https://demo.preservica.com/Registry/par/documentation.html

For more information on PAR see: https://parcore.org/

This pyPreservica PAR client will work with any PAR implementation which uses HTTP Basic Auth.

Non-Authenticated Read Access

The interfaces for reading information from the PAR are non-authenticated calls. Only a server address is
required. All the interfaces for reading information return JSON documents.

The JSON documents can be converted into Python Dictionaries using the standard json library.

	Format Families

import json

par = PreservationActionRegistry(server="par-server.com")
json_document = par.format_families()
dict_obj = json.loads(json_document)

json_document = par.format_family('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	Preservation Action Types

par = PreservationActionRegistry(server="par-server.com")
json_document = par.preservation_action_types()
dict_obj = json.loads(json_document)

json_document = par.preservation_action_type('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	Properties

par = PreservationActionRegistry(server="par-server.com")
json_document = par.properties()
dict_obj = json.loads(json_document)

json_document = par.property('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	Representation Formats

par = PreservationActionRegistry(server="par-server.com")
json_document = par.representation_format()
dict_obj = json.loads(json_document)

json_document = par.representation_formats('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	File Formats

par = PreservationActionRegistry(server="par-server.com")
json_document = par.file_formats()
dict_obj = json.loads(json_document)

json_document = par.file_format('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	Tools

par = PreservationActionRegistry(server="par-server.com")
json_document = par.tools()
dict_obj = json.loads(json_document)

json_document = par.tool('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	Preservation Action

par = PreservationActionRegistry(server="par-server.com")
json_document = par.preservation_actions()
dict_obj = json.loads(json_document)

json_document = par.preservation_action('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	Business Rules

par = PreservationActionRegistry(server="par-server.com")
json_document = par.business_rules()
dict_obj = json.loads(json_document)

json_document = par.business_rule('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

	Rule Sets

par = PreservationActionRegistry(server="par-server.com")
json_document = par.rule_sets()
dict_obj = json.loads(json_document)

json_document = par.rule_set('ae87efa4-cd5a-5d07-b1b7-251a4fe871c8')
dict_obj = json.loads(json_document)

 Monitor API

Monitor API

This is an API for monitoring certain types of long running process within Preservica, for example OPEX ingests.

You can find Swagger UI for this API at https://us.preservica.com/api/processmonitor/documentation.html

Monitors

Returns a generator of monitors. The ID returned for each monitor can be used as an ID parameter in other endpoints.
These IDs might change between releases, so you should not persist them as permanent object links.
Filters are additive, e.g. if both category and status filters are applied then only processes matching
both category and status will be included.

This call returns a Generator which can be used to enumerate over all the monitor objects. The result is a
monitor object which is dictionary created from the returned json.

client = MonitorAPI()

for monitor in client.monitors():
 print(monitor)

Filters can be applied to limit the returned data, for example:

client = MonitorAPI()

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.SUCCEEDED):
 print(monitor)

Messages

Returns a generator of process messages for each Monitor.

client = MonitorAPI()

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.SUCCEEDED):
 print(monitor)
 for message in client.messages(monitor['MonitorId']):
 print(message)

Messages can be filtered

client = MonitorAPI()

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.SUCCEEDED):
 print(monitor)
 for message in client.messages(monitor['MonitorId'], status=MessageStatus.ERROR):
 print(message)

Monitor Timeseries

Get the historical record of progress for a single monitor.

for monitor in client.monitors(category=MonitorCategory.INGEST, status=MonitorStatus.RUNNING):
 print(monitor)
 for series in client.timeseries(monitor['MonitorId']):
 print(series)

 WebHook API

WebHook API

pyPreservica now contains APIs for accessing the web hook API.

Webhooks are “user-defined HTTP callbacks”. They are triggered by some Preservica event, such as ingesting objects
into the repository. When that event occurs, Preservica makes an HTTP request to the URL configured for the webhook.

Unlike the traditional process of “polling” in which a client asks the repository if anything has changed, web hooks
automatically send out information to subscribed systems when certain events have happened.

To receive web hook notifications the 3rd party application requires a web server which can process HTTP POST requests.

To authenticate messages from Preservica to prevent spoofing attacks, the messages are verified through the use of a
shared secret key.

The Webhook API requires the user to have at least the repository manager role, ROLE_SDB_MANAGER_USER

Subscribing

Before a system can receive notifications from Preservica, it must subscribe to a notification trigger.

Preservica currently supports three different triggers, “MOVED”, “SECURITY_CHANGED” and “INDEXED”.

The “Indexed” notification is sent after an object has been ingested and the full text index has been extracted,
at this point the thumbnail and search contents are available.

When creating a new subscription service you need to generate a shared secret key and pass it as an argument to the
subscribe method. This is used to verify the web service which will receive the web hooks.

The URL must be a publicly addressable web server.

webhook = WebHooksAPI()

webhook.subscribe("http://my-webhook-server.com:8080/", TriggerType.INDEXED, "my_shared_secret")

The given URL host will need to respond to a validation challenge during the subscription request.
Preservica will make a POST request to the URL with a challengeCode query parameter.
The receiver must respond with the expected challenge response or the subscription will fail.
The challenge response must take the form:

{
 "challengeCode": "challengeCode",
 "challengeResponse": "hexHmac256Response"
}

where hexHmac256Response is a hex hmac256 of the challengeCode using the shared secret as the hmac key.

If the web server is unable to correctly verify the subscription then an exception is thrown.

Listing Subscriptions

You can query the system for a list of current subscriptions for a tenancy.

webhook = WebHooksAPI()

json_doc = webhook.subscriptions()

print(json_doc)

Unsubscribe

To unsubscribe to a web hook, you need the subscription id

webhook = WebHooksAPI()

webhook.unsubscribe("c306c99ca3a736124fa711bec53c737d")

To unsubscribe to all web hooks use

webhook = WebHooksAPI()

webhook.unsubscribe_all()

Reference Web Server

To receive web hook notifications pyPreservica has provided a reference web server implementation which provides
support for negotiation of the challenge request handshake during the subscription request and
verification of each webhook event request.

To implement the web server, extend the base class WebHookHandler and implement a single method do_WORK()
this method is called everytime Preservica calls the web hook.
This method is therefore where any processing takes place. For example updating a catalogue system etc.

class MyWebHook(WebHookHandler):
 def do_WORK(self, json_payload):
 """
 Process the event
 """

The handler can then be used to create a web server, the web server should be run from the same directory as a
credential.properties file containing the shared secret which was used to create the web hook subscription.

[credentials]
secret.key=my_shared_secret

For example a simple web hook server which prints the events to the console as they arrive would be:

from http.server import HTTPServer
from sys import argv
from pyPreservica import *

class MyWebHook(WebHookHandler):
 def do_WORK(self, json_payload):
 print(json_payload)

if __name__ == '__main__':

 config = configparser.ConfigParser(interpolation=configparser.Interpolation())
 config.read('credentials.properties', encoding='utf-8')
 secret_key = config['credentials']['secret.key']

 if len(argv) > 1:
 arg = argv[1].split(':')
 BIND_HOST = arg[0]
 PORT = int(arg[1])

 print(f'Listening on http://{BIND_HOST}:{PORT}\n')

 httpd = HTTPServer((BIND_HOST, PORT), MyWebHook)
 httpd.secret_key = secret_key
 httpd.serve_forever()

The web server would then be started using:

$ python3 server.py 0.0.0.0:8000

A more interesting web hook handler might be one which downloads the thumbnail image from each Asset as it is ingested
using the pyPreservica EntityAPI()

class MyWebHook(WebHookHandler):
 def do_WORK(self, json_payload):
 client = EntityAPI()
 for reference in list(json_payload['events']):
 ref = reference['entityRef']
 asset = client.asset(ref)
 client.thumbnail(asset, f"{ref}.jpg")

 Authority Records API

Authority Records API

This API is used for managing the controlled vocabulary (Authority) records within Preservica.

Controlled vocabularies within Preservica are tables of records which can be linked to specific metadata attributes.
Each table can consist of multiple records and each record has multiple fields.

[image: _images/reference_md.png]

Authority Tables

Fetch a list of all Authority tables

authority = AuthorityAPI()

for table in authority.tables():
 print(table)

Get a single Authority table by its reference

authority = AuthorityAPI()

table = authority.table(ref):

Authority Records

Fetch a record by its reference

authority = AuthorityAPI()

record = authority.record(reference)

Fetch all records from a table

authority = AuthorityAPI()

table = authority.table(ref):

for record in authority.records(table):
 print(record)

Add a new authority record to an existing table, the record is a Python dictionary object

authority = AuthorityAPI()

table = authority.table(ref):

record = {"id": "6", "Code": "BE", "Latitude": "50.503887", "Longitude": "4.469936", "Name": "Belgium"}

authority.add_record(table, record)

Adding records from a CSV document

authority = AuthorityAPI()

table = authority.table(ref):

authority.add_records(table, "countries.csv")

If the CSV document was saved from a MS Excel workbook, then the encoding should be set to utf-8-sig

authority = AuthorityAPI()

table = authority.table(ref):

authority.add_records(table, "countries.csv", encoding="utf-8-sig")

Deleting Records from a table by its reference

authority = AuthorityAPI()

table = authority.table(ref):

authority.delete_record(table, reference)

To delete all records from a table

authority = AuthorityAPI()

table = authority.table(ref):

for record in authority.records(table):
 authority.delete_record(table, record['ref'])

 Example Applications

Example Applications

Updating a descriptive metadata element value

If you need to bulk update metadata values the following script will check every asset in a folder given by the “folder-uuid”
and find the matching descriptive metadata document by its namespace “your-xml-namespace”.
It will then find a particular element in the xml document “your-element-name” and update its value.

from xml.etree import ElementTree
from pyPreservica import *
client = EntityAPI()
folder = client.folder("folder-uuid")
next_page = None
while True:
 children = client.children(folder.reference, maximum=10, next_page=next_page)
 for entity in children.results:
 if entity.entity_type is EntityAPI.EntityType.ASSET:
 asset = client.asset(entity.reference)
 for url, schema in asset.metadata.items():
 if schema == "your-xml-namespace":
 xml_document = ElementTree.fromstring(client.metadata(url))
 field_with_error = xml_document.find('.//{your-xml-namespace}your-element-name')
 if hasattr(field_with_error, 'text'):
 if field_with_error.text == "Old Value":
 field_with_error.text = "New Value"
 asset = client.update_metadata(asset, schema, ElementTree.tostring(xml_document, encoding='UTF-8', xml_declaration=True).decode("utf-8"))
 print("Updated asset: " + asset.title)
 if not children.has_more:
 break
 else:
 next_page = children.next_page

The following script does the same thing as above but uses the function descendants() rather than children().
The difference is that descendants() does the paging of results internally and combined with
a filter() on the lazy iterator provides a version which does not need the additional while loop or if statement!

client = EntityAPI()
folder = client.folder("folder-uuid")
for child_asset in filter(only_assets, client.descendants(folder.reference)):
 asset = client.asset(child_asset.reference)
 document = ElementTree.fromstring(client.metadata_for_entity(asset, "your-xml-namespace"))
 field_with_error = document.find('.//{your-xml-namespace}your-element-name')
 if hasattr(field_with_error, 'text'):
 if field_with_error.text == "Old Value":
 field_with_error.text = "New Value"
 new_xml = ElementTree.tostring(document, encoding='UTF-8', xml_declaration=True).decode("utf-8")
 asset = client.update_metadata(asset, "your-xml-namespace", new_xml)
 print("Updated asset: " + asset.title)

Adding Metadata from a Spreadsheet

One common use case which can be solved with pyPreservica is adding descriptive metadata to existing Preservica assets or folders
using metadata held in a spreadsheet. Normally each column in the spreadsheet contains a metadata attribute and each row represents a
different asset.

The following is a short python script which uses pyPreservica to update assets within Preservica
with Dublin Core Metadata held in a spreadsheet.

The spreadsheet should contain a header row. The column name in the header row
should start with the text “dc:” to be included.
There should be one column called “assetId” which contains the reference id for the asset to be updated.

The metadata should be saved as a UTF-8 CSV file called dublincore.csv

import xml
import csv
from pyPreservica import *

OAI_DC = "http://www.openarchives.org/OAI/2.0/oai_dc/"
DC = "http://purl.org/dc/elements/1.1/"
XSI = "http://www.w3.org/2001/XMLSchema-instance"

entity = EntityAPI()

headers = list()
with open('dublincore.csv', encoding='utf-8-sig', newline='') as csvfile:
 reader = csv.reader(csvfile)
 for row in reader:
 for header in row:
 headers.append(header)
 break
 if 'assetId' in headers:
 for row in reader:
 assetID = None
 xml_object = xml.etree.ElementTree.Element('oai_dc:dc', {"xmlns:oai_dc": OAI_DC, "xmlns:dc": DC, "xmlns:xsi": XSI})
 for value, header in zip(row, headers):
 if header.startswith('dc:'):
 xml.etree.ElementTree.SubElement(xml_object, header).text = value
 elif header.startswith('assetId'):
 assetID = value
 xml_request = xml.etree.ElementTree.tostring(xml_object, encoding='utf-8', xml_declaration=True).decode('utf-8')
 asset = entity.asset(assetID)
 entity.add_metadata(asset, OAI_DC, xml_request)
 else:
 print("The CSV file should contain a assetId column containing the Preservica identifier for the asset to be updated")

Creating Searchable Transcripts from Oral Histories

The following is an example python script which uses a 3rd party Machine Learning API to automatically generate a text
transcript from an audio file such as a WAVE file.
The transcript is then uploaded to Preservica, is stored as metadata attached to an asset and indexed so that the audio or oral history is searchable.

This example uses the AWS https://aws.amazon.com/transcribe/ service, but other AI APIs are also available.
AWS provides a free tier https://aws.amazon.com/free/ to allow you to try the service for no cost.

This python script does require a set of AWS credentials to use the AWS transcribe service.

The python script downloads a WAV file using its reference, uploads it to AWS S3 and then starts the transcription service,
when the transcript is available it creates a metadata document containing the text and uploads it to Preservica.:

import os,time,uuid,xml,boto3,requests
from pyPreservica import *

BUCKET = "com.my.transcribe.bucket"
AWS_KEY = '.....'
AWS_SECRET = '........'
REGION = 'eu-west-1'
download the file to the local machine
client = EntityAPI()
asset = client.asset('91c73c95-a298-448c-a5a3-2295e5052be3')
client.download(asset, f"{asset.reference}.wav")
upload the file to AWS
s3_client = boto3.client('s3', region_name=REGION, aws_access_key_id=AWS_KEY, aws_secret_access_key=AWS_SECRET)
response = s3_client.upload_file(f"{asset.reference}.wav", BUCKET, f"{asset.reference}")
Start the transcription service
transcribe = boto3.client('transcribe', region_name=REGION, aws_access_key_id=KEY, aws_secret_access_key=SECRET)
job_name = str(uuid.uuid4())
job_uri = f"https://s3-{REGION}.amazonaws.com/{BUCKET}/{asset.reference}"
transcribe.start_transcription_job(TranscriptionJobName=job_name, Media={'MediaFileUri': job_uri}, MediaFormat='wav', LanguageCode='en-US')
while True:
 status = transcribe.get_transcription_job(TranscriptionJobName=job_name)
 if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:
 break
 print("Still working on the transcription....")
 time.sleep(5)
upload the transcript text to Preservica
if status['TranscriptionJob']['TranscriptionJobStatus'] == 'COMPLETED':
 result_url = status['TranscriptionJob']['Transcript']['TranscriptFileUri']
 json = requests.get(result_url).json()
 text = json['results']['transcripts'][0]['transcript']
 xml_object = xml.etree.ElementTree.Element('tns:Transcript', {"xmlns:tns": "https://aws.amazon.com/transcribe/"})
 xml.etree.ElementTree.SubElement(xml_object, "Transcription").text = text
 xml_request = xml.etree.ElementTree.tostring(xml_object, encoding='utf-8', xml_declaration=True).decode('utf-8')
 client.add_metadata(asset, "https://aws.amazon.com/transcribe/", xml_request) # add the xml transcript
 s3_client.delete_object(Bucket=BUCKET, Key=asset.reference) # delete the temp file from s3
 os.remove(f"{asset.reference}.wav") # delete the local copy

 Developer Interface

Developer Interface

Entity API

This part of the documentation covers all the interfaces of pyPreservica EntityAPI object.

	
class pyPreservica.EntityAPI(username: str | None = None, password: str | None = None, tenant: str | None = None, server: str | None = None, use_shared_secret: bool = False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	A class for the Preservica Repository web services Entity API

https://us.preservica.com/api/entity/documentation.html

The EntityAPI allows users to interact with the Preservica repository

	
asset(reference)

	Returns an asset object back by its internal reference identifier

	Parameters:

	reference (str) – The unique identifier for the asset usually its uuid

	Returns:

	The Asset object

	Return type:

	Asset

	Raises:

	RuntimeError – if the identifier is incorrect

	
folder(reference)

	Returns a folder object back by its internal reference identifier

	Parameters:

	reference (str) – The unique identifier for the asset usually its uuid

	Returns:

	The Folder object

	Return type:

	Folder

	Raises:

	RuntimeError – if the identifier is incorrect

	
content_object(reference)

	Returns a content object back by its internal reference identifier

	Parameters:

	reference (str) – The unique identifier for the asset usually its uuid

	Returns:

	The content object

	Return type:

	ContentObject

	Raises:

	RuntimeError – if the identifier is incorrect

	
entity(entity_type, reference)

	Returns an generic entity based on its reference identifier

	Parameters:

	
	entity_type (EntityType) – The type of entity

	reference (str) – The unique identifier for the entity

	Returns:

	The entity either Asset, Folder or ContentObject

	Return type:

	Entity

	Raises:

	RuntimeError – if the identifier is incorrect

	
save(entity)

	Updates the title and description of an entity
The security tag and parent are not saved via this method call

	Parameters:

	entity (Entity) – The entity (asset, folder, content_object) to be updated

	Returns:

	The updated entity

	Return type:

	Entity

	
security_tag_async(entity, new_tag)

	Change the security tag of an asset or folder
This is a non blocking call which returns immediately.

	Parameters:

	
	entity (Entity) – The entity (asset, folder) to be updated

	new_tag (str) – The new security tag to be set on the entity

	Returns:

	A progress id which can be used to monitor the workflow

	Return type:

	str

	
security_tag_sync(entity, new_tag)

	Change the security tag of an asset or folder
This is a blocking call which returns after all entities have been updated.

	Parameters:

	
	entity (Entity) – The entity (asset, folder) to be updated

	new_tag (str) – The new security tag to be set on the entity

	Returns:

	The updated entity

	Return type:

	Entity

	
create_folder(title, description, security_tag, parent=None)

	Create a new folder in the repository below the specified parent folder.
If parent is missing or None then a root level folder is created.

	Parameters:

	
	title (str) – The title of the new folder

	description (str) – The description of the new folder

	security_tag (str) – The security tag of the new folder

	parent (str) – The identifier for the parent folder

	Returns:

	The new folder object

	Return type:

	Folder

	
representations(asset)

	Return a set of representations for the asset

Representations are used to define how the information object are composed in terms of technology and structure.

	Parameters:

	asset (Asset) – The asset containing the required representations

	Returns:

	Set of Representation objects

	Return type:

	set(Representation)

	
content_objects(representation)

	Return a list of content objects for a representation

	Parameters:

	representation (Representation) – The representation

	Returns:

	List of content objects

	Return type:

	list(ContentObject)

	
generations(content_object)

	Return a list of Generation objects for a content object

	Parameters:

	content_object (ContentObject) – The content object

	Returns:

	list of generations

	Return type:

	list(Generation)

	
bitstream_content(bitstream, filename)

	Downloads the bitstream object to a local file

	Parameters:

	
	bitstream (Bitstream) – The content object

	filename (str) – The name of the file the bytes are written to

	Returns:

	the number of bytes written

	Return type:

	int

	
identifiers_for_entity(entity)

	Return a set of identifiers which belong to the entity

	Parameters:

	entity (Entity) – The entity

	Returns:

	Set of identifiers as tuples

	Return type:

	set(Tuple)

	
identifier(identifier_type, identifier_value)

	Return a set of entities with external identifiers which match the type and value

	Parameters:

	
	identifier_type (str) – The identifier type

	identifier_value (str) – The identifier value

	Returns:

	Set of entity objects which have a reference and title attribute

	Return type:

	set(Entity)

	
add_identifier(entity, identifier_type, identifier_value)

	Add a new external identifier to an Entity object

	Parameters:

	
	entity (Entity) – The entity the identifier is added to

	identifier_type (str) – The identifier type

	identifier_value (str) – The identifier value

	Returns:

	An internal id for this external identifier

	Return type:

	str

	
delete_identifiers(entity, identifier_type=None, identifier_value=None)

	Delete identifiers on an Entity object

	Parameters:

	
	entity (Entity) – The entity the identifiers are deleted from

	identifier_type (str) – The identifier type

	identifier_value (str) – The identifier value

	Returns:

	entity

	Return type:

	Entity

	
metadata(uri)

	Fetch the metadata document by its identifier, this is the key from the entity metadata map

	Parameters:

	uri (str) – The metadata identifier

	Returns:

	An XML document as a string

	Return type:

	str

	
metadata_for_entity(entity, schema)

	Fetch the first metadata document which matches the schema URI from an entity

	Parameters:

	
	entity (Entity) – The entity containing the metadata

	schema (str) – The metadata schema URI

	Returns:

	The first XML document on the entity matching the schema URI

	Return type:

	str

	
add_metadata(entity, schema, data)

	Add a new descriptive XML document to an entity

	Parameters:

	
	entity (Entity) – The entity to add the metadata to

	schema (str) – The metadata schema URI

	data (data) – The XML document as a string or as a file bytes

	Returns:

	The updated Entity

	Return type:

	Entity

	
update_metadata(entity, schema, data)

	Update an existing descriptive XML document on an entity

	Parameters:

	
	entity (Entity) – The entity to add the metadata to

	schema (str) – The metadata schema URI

	data (data) – The XML document as a string or as a file bytes

	Returns:

	The updated Entity

	Return type:

	Entity

	
delete_metadata(entity, entity, schema)

	Delete an existing descriptive XML document on an entity by its schema
This call will delete all fragments with the same schema

	Parameters:

	
	entity (Entity) – The entity to add the metadata to

	schema (str) – The metadata schema URI

	Returns:

	The updated Entity

	Return type:

	Entity

	
move_sync(entity, dest_folder)

	Move an entity (asset or folder) to a new folder
This call blocks until the move is complete

	Parameters:

	
	entity (Entity) – The entity to move either asset or folder

	dest_folder (Entity) – The new destination folder. This can be None to move a folder to the root of the repository

	Returns:

	The updated entity

	Return type:

	Entity

	
move_async(entity, dest_folder)

	Move an entity (asset or folder) to a new folder
This call returns immediately and does not block

	Parameters:

	
	entity (Entity) – The entity to move either asset or folder

	dest_folder (Entity) – The new destination folder. This can be None to move a folder to the root of the repository

	Returns:

	Progress ID token

	Return type:

	str

	
move(entity, dest_folder)

	Move an entity (asset or folder) to a new folder
This call is an alias for the move_sync (blocking) method.

	Parameters:

	
	entity (Entity) – The entity to move either asset or folder

	dest_folder (Entity) – The new destination folder. This can be None to move a folder to the root of the repository

	Returns:

	The updated entity

	Return type:

	Entity

	
children(folder, maximum=50, next_page=None)

	Return the child entities of a folder one page at a time. The caller is responsible for
requesting the next page of results.

	Parameters:

	
	folder (str) – The parent folder reference, None for the children of root folders

	maximum (int) – The maximum size of the result set in each page

	next_page (str) – A URL for the next page of results

	Returns:

	A set of entity objects

	Return type:

	set(Entity)

	
descendants(folder)

	Return the immediate child entities of a folder using a lazy iterator. The paging is done internally using a default page
size of 50 elements. Callers can iterate over the result to get all children with a single call.

	Parameters:

	folder (str) – The parent folder reference, None for the children of root folders

	Returns:

	A set of entity objects (Folders and Assets)

	Return type:

	set(Entity)

	
all_descendants(folder)

	Return all child entities recursively of a folder or repository down to the assets using a lazy iterator.
The paging is done internally using a default page
size of 25 elements. Callers can iterate over the result to get all children with a single call.

	Parameters:

	folder (str) – The parent folder reference, None for the children of root folders

	Returns:

	A set of entity objects (Folders and Assets)

	Return type:

	set(Entity)

	
delete_asset(asset, operator_comment, supervisor_comment)

	Initiate and approve the deletion of an asset.

	Parameters:

	
	asset (Asset) – The asset to delete

	operator_comment (str) – The comments from the operator which are added to the logs

	supervisor_comment (str) – The comments from the supervisor which are added to the logs

	Returns:

	The asset reference

	Return type:

	str

	
delete_folder(asset, operator_comment, supervisor_comment)

	Initiate and approve the deletion of a folder.

	Parameters:

	
	asset (Folder) – The folder to delete

	operator_comment (str) – The comments from the operator which are added to the logs

	supervisor_comment (str) – The comments from the supervisor which are added to the logs

	Returns:

	The folder reference

	Return type:

	str

	
thumbnail(entity, filename, size=Thumbnail.LARGE)

	Get the thumbnail image for an asset or folder

	Parameters:

	
	entity (Entity) – The entity

	filename (str) – The file the image is written to

	size (Thumbnail) – The size of the thumbnail image

	Returns:

	The filename

	Return type:

	str

	
download(entity, filename)

	Download the first generation of the access representation of an asset

	Parameters:

	
	entity (Entity) – The entity

	filename (str) – The file the image is written to

	size (Thumbnail) – The size of the thumbnail image

	Returns:

	The filename

	Return type:

	str

	
updated_entities(previous_days: int = 1)

	Fetch a list of entities which have changed (been updated) over the previous n days.

This method uses a generator function to make repeated calls to the server for every page of results.

	Parameters:

	previous_days (int) – The number of days to check for changes.

	Returns:

	A list of entities

	Return type:

	list

	
all_events()

	Returns a list of events for the user’s tenancy

This method uses a generator function to make repeated calls to the server for every page of results.

	Returns:

	A list of events

	Return type:

	list

	
entity_events(entity: Entity)

	Returns a list of event actions performed against this entity

This method uses a generator function to make repeated calls to the server for every page of results.

	Parameters:

	entity (Entity) – The entity

	Returns:

	A list of events

	Return type:

	list

	
add_thumbnail(entity: Entity, image_file: str)

	Set the thumbnail for the entity to the uploaded image

Supported image formats are png, jpeg, tiff, gif and bmp. The image must be 10MB or less in size.

	Parameters:

	
	entity (Entity) – The entity

	image_file (str) – The path to the image

	
remove_thumbnail(entity: Entity)

	Remove the thumbnail for the entity to the uploaded image

	Parameters:

	image_file (str) – The path to the image

	
replace_generation_sync(content_object: ContentObject, file_name: str, fixity_algorithm, fixity_value)

	Replace the last active generation of a content object with a new digital file.

Starts the workflow and blocks until the workflow completes.

	Parameters:

	
	content_object (ContentObject) – The content object to replace

	file_name (str) – The path to the new content object

	fixity_algorithm (str) – Optional fixity algorithm

	fixity_value (str) – Optional fixity value

	Returns:

	Completed workflow status

	Return type:

	str

	
replace_generation_async(content_object: ContentObject, file_name: str, fixity_algorithm, fixity_value)

	Replace the last active generation of a content object with a new digital file.

Starts the workflow and returns a process ID

	Parameters:

	
	content_object (ContentObject) – The content object to replace

	file_name (str) – The path to the new content object

	fixity_algorithm (str) – Optional fixity algorithm

	fixity_value (str) – Optional fixity value

	Returns:

	Process ID

	Return type:

	str

	
get_async_progress(pid: str)

	Return the status of a running process

	Parameters:

	str (pid) – The progress ID

	Returns:

	Workflow status

	Return type:

	str

	
export_opex(entity: Entity, **kwargs)

	Initiates export of the entity and downloads the opex package

	Parameters:

	
	entity (Entity) – The entity to export Asset or Folder

	IncludeContent (str) – “Content”, “NoContent”

	IncludeMetadata (str) – “Metadata”, “NoMetadata”, “MetadataWithEvents”

	IncludedGenerations (str) – “LatestActive”, “AllActive”, “All”

	IncludeParentHierarchy (str) – “true”, “false”

	Returns:

	The path to the opex ZIP file

	Return type:

	str

	
class pyPreservica.Generation

	Generations represent changes to content objects over time, as formats become obsolete new
generations may need to be created to make the information accessible.

	
original

	

original generation (True or False)

	
active

	

active generation (True or False)

	
format_group

	

format for this generation

	
effective_date

	

effective date generation

	
bitstreams

	

list of Bitstream objects

	
properties

	

list of technical properties
each property is dict object containing PUID, PropertyName and Value

	
formats

	

list of technical formats
each format is dict object containing PUID, FormatName and FormatVersion

	
class pyPreservica.Bitstream

	Bitstreams represent the actual computer files as ingested into Preservica, i.e.
the TIFF photograph or the PDF document

	
filename

	

The filename of the original bitstream

	
length

	

The file size in bytes of the original Bitstream

	
fixity

	

Dictionary object of fixity values for this bitstream,
the key is the algorithm name and the value is the fixity value

	
class pyPreservica.Representation

	Representations are used to define how the information object are composed in terms of technology and structure.

	
rep_type

	

The type of representation

	
name

	

The name of representation

	
asset

	

The asset the representation belongs to

	
class pyPreservica.Entity

	Entity is the base class for assets, folders and content objects
They all have the following attributes

	
reference

	

The unique internal reference for the entity

	
title

	

The title of the entity

	
description

	

The description of the entity

	
security_tag

	

The security tag of the entity

	
parent

	

The unique internal reference for this entity’s parent object

The parent of an Asset is always a Folder

The parent of a Folder is always a Folder or None for a folder at the root of the repository

The parent of a Content Object is always an Asset

	
metadata

	

A map of descriptive metadata attached to the entity.

The key of the map is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Assets have entity type EntityType.ASSET

Folders have entity type EntityType.FOLDER

Content Objects have entity type EntityType.CONTENT_OBJECT

	
class pyPreservica.Asset

	Asset represents the information object or intellectual unit of information within the repository.

	
reference

	

The unique internal reference for the asset

	
title

	

The title of the asset

	
description

	

The description of the asset

	
security_tag

	

The security tag of the asset

	
parent

	

The unique internal reference for this asset’s parent folder

	
metadata

	

A dict of descriptive metadata attached to the asset.

The key of the dict is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Assets have entity type EntityType.ASSET

	
class pyPreservica.Folder

	Folder represents the structure of the repository and contains both Assets and Folder objects.

	
reference

	

The unique internal reference for the folder

	
title

	

The title of the folder

	
description

	

The description of the folder

	
security_tag

	

The security tag of the folder

	
parent

	

The unique internal reference for this folder’s parent folder

	
metadata

	

A map of descriptive metadata attached to the folder.

The key of the map is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Assets have entity type EntityType.FOLDER

	
class pyPreservica.ContentObject

	ContentObject represents the internal structure of an asset.

	
reference

	

The unique internal reference for the content object

	
title

	

The title of the content object

	
description

	

The description of the content object

	
security_tag

	

The security tag of the content object

	
parent

	

The unique internal reference for this content object parent asset

	
metadata

	

A map of descriptive metadata attached to the content object.

The key of the map is the metadata identifier used to retrieve the metadata document
and the value is the schema URI

	
entity_type

	

Content objects have entity type EntityType.CONTENT_OBJECT

	
class pyPreservica.EntityType(value)

	Enumeration of the Entity Types

	
class pyPreservica.RelationshipDirection(value)

	An enumeration.

	
class pyPreservica.IntegrityCheck(check_type, success, date, adapter, fixed, reason)

	Class to hold information about completed integrity checks

Content API

This part of the documentation covers all the interfaces of pyPreservica UploadAPI object.

	
class pyPreservica.ContentAPI

	
	
object_details(entity_type, reference)

	Return a list of all the indexed fields in the Preservica search index.

	Parameters:

	
	entity_type (str) – Entity type, either “IO” or “SO”

	reference (str) – Entity reference

	Returns:

	object attributes

	Return type:

	dict

	
indexed_fields()

	Return a list of all the indexed fields in the Preservica search index.

	Returns:

	list of index field names

	Return type:

	list

	
simple_search_list(query: str = '%', page_size: int = 10, *args)

	Search Preservica using a simple search term across all indexed fields, the results are returned as generator

	Parameters:

	
	query (str) – Query term

	page_size (int) – Number of results fetched between server calls

	args (tuple) – index names to include in the result

	Returns:

	list of search result hits

	Return type:

	list

	
simple_search_csv(query: str = '%', csv_file='search.csv', *args)

	Search Preservica using a simple search term across all indexed fields, output the results to a csv file.

	Parameters:

	
	query (str) – Query term

	page_size (int) – Number of results fetched between server calls

	args (tuple) – index names to include in the result

Upload API

This part of the documentation covers all the interfaces of pyPreservica UploadAPI object.

	
pyPreservica.simple_asset_package(preservation_file=None, access_file=None, export_folder=None, parent_folder=None, compress=True, **kwargs)

	Create a Preservica package containing a single Asset from a single preservation file
and an optional access file.
The Asset contains one Content Object for each representation.

If only the preservation file is provided the asset has one representation

	Parameters:

	
	preservation_file (str) – Path to the preservation file

	access_file (str) – Path to the access file

	export_folder (str) – The package location folder

	parent_folder (Folder) – The folder to ingest the asset into

	compress (bool) – Compress the ZIP file

	Title (str) – Asset Title

	Description (str) – Asset Description

	SecurityTag (str) – Asset SecurityTag

	CustomType (str) – Asset CustomType

	Preservation_Content_Title (str) – Title of the Preservation Representation Content Object

	Preservation_Content_Description (str) – Description of the Preservation Representation Content Object

	Access_Content_Title (str) – Title of the Access Representation Content Object

	Access_Content_Description (str) – Description of the Access Representation Content Object

	Asset_Metadata (dict) – Dictionary of Asset metadata documents

	Identifiers (dict) – Dictionary of Asset rd party identifiers

	
pyPreservica.complex_asset_package(preservation_files_list=None, access_files_list=None, export_folder=None, parent_folder=None, compress=True, **kwargs)

	
Create a Preservica package containing a single Asset from a multiple preservation files
and optional access files.
The Asset contains multiple Content Objects within each representation.

If only the preservation files are provided the asset has one representation

	param list preservation_files_list:

	Paths to the preservation files

	param list access_files_list:

	Paths to the access files

	param str export_folder:

	The package location folder

	param Folder parent_folder:

	The folder to ingest the asset into

	param bool compress:

	Compress the ZIP file

	param str Title:

	Asset Title

	param str Description:

	Asset Description

	param str SecurityTag:

	Asset SecurityTag

	param str CustomType:

	Asset CustomType

	param str Preservation_Content_Title:

	Title of the Preservation Representation Content Object

	param str Preservation_Content_Description:

	Description of the Preservation Representation Content Object

	param str Access_Content_Title:

	Title of the Access Representation Content Object

	param str Access_Content_Description:

	Description of the Access Representation Content Object

	param dict Asset_Metadata:

	Dictionary of Asset metadata documents

	param dict Identifiers:

	Dictionary of Asset rd party identifiers

optional kwargs map
‘Title’ Asset Title
‘Description’ Asset Description
‘SecurityTag’ Asset Security Tag
‘CustomType’ Asset Type
‘Preservation_Content_Title’ Content Object Title of the Preservation Object
‘Preservation_Content_Description’ Content Object Description of the Preservation Object
‘Access_Content_Title’ Content Object Title of the Access Object
‘Access_Content_Description’ Content Object Description of the Access Object
‘Preservation_Generation_Label’ Generation Label for the Preservation Object
‘Access_Generation_Label’ Generation Label for the Access Object
‘Asset_Metadata’ Map of metadata schema/documents to add to asset
‘Identifiers’ Map of asset identifiers
‘Preservation_files_fixity_callback’ Callback to allow external generated fixity values
‘Access_files_fixity_callback’ Callback to allow external generated fixity values
‘IO_Identifier_callback’ Callback to allow external generated Asset identifier
‘Preservation_Representation_Name’ Name of the Preservation Representation
‘Access_Representation_Name’ Name of the Access Representation

	
pyPreservica.cvs_to_xml(csv_file, xml_namespace, root_element, file_name_column='filename', export_folder=None, additional_namespaces=None)

	Export the rows of a CSV file as XML metadata documents which can be added to Preservica assets

	Parameters:

	
	csv_file (str) – Path to the csv file

	xml_namespace (str) – The XML namespace for the created XML documents

	root_element (str) – The root element for the XML documents

	file_name_column (str) – The CSV column which should be used to name the xml files

	export_folder (str) – The path to the export folder

	additional_namespaces (dict) – A map of prefix, uris to use as additional namespaces

	
class pyPreservica.UploadAPI(username: str | None = None, password: str | None = None, tenant: str | None = None, server: str | None = None, use_shared_secret: bool = False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	
	
ingest_tweet(twitter_user=None, tweet_id: int = 0, twitter_consumer_key=None, twitter_secret_key=None, folder=None, callback=None, **kwargs)

	Ingest tweets from a twitter stream by twitter username

	Parameters:

	
	tweet_id

	twitter_user (str) – Twitter Username

	twitter_consumer_key (str) – Optional asset title

	twitter_secret_key (str) – Optional asset description

	folder (str) – Folder to ingest into

	callback (callback) – Optional upload progress callback

	Raises:

	RuntimeError –

	
ingest_twitter_feed(twitter_user=None, num_tweets: int = 25, twitter_consumer_key=None, twitter_secret_key=None, folder=None, callback=None, **kwargs)

	Ingest tweets from a twitter stream by twitter username

	Parameters:

	
	twitter_user (str) – Twitter Username

	num_tweets (int) – The number of tweets from the stream

	twitter_consumer_key (str) – Optional asset title

	twitter_secret_key (str) – Optional asset description

	folder (str) – Folder to ingest into

	callback (callback) – Optional upload progress callback

	Raises:

	RuntimeError –

	
ingest_web_video(url=None, parent_folder=None, **kwargs)

	Ingest a web video such as YouTube etc based on the URL

	Parameters:

	
	url (str) – URL to the youtube video

	parent_folder (Folder) – The folder to ingest the video into

	Title (str) – Optional asset title

	Description (str) – Optional asset description

	SecurityTag (str) – Optional asset security tag

	Identifiers (dict) – Optional asset 3rd party identifiers

	Asset_Metadata (dict) – Optional asset additional descriptive metadata

	callback (callback) – Optional upload progress callback

	Raises:

	RuntimeError –

	
upload_buckets()

	Get a list of available upload buckets

	Returns:

	dict of bucket names and regions

	
upload_credentials(location_id: str)

	Retrieves temporary upload credentials (Amazon STS, or Azure SAS) for this location.

	Returns:

	dict

	
upload_locations()

	Upload locations are configured on the Sources page as ‘SIP Upload’.
:return: dict

	
upload_zip_package(path_to_zip_package, folder=None, callback=None, delete_after_upload=False)

	Uploads a zip file package directly to Preservica and starts an ingest workflow

	Parameters:

	
	path_to_zip_package (str) – Path to the package

	folder (Folder) – The folder to ingest the package into

	callback (Callable) – Optional callback to allow the callee to monitor the upload progress

	delete_after_upload (bool) – Delete the local copy of the package after the upload has completed

	Returns:

	preservica-progress-token to allow the workflow progress to be monitored

	Return type:

	str

	Raises:

	RuntimeError –

	
upload_zip_package_to_Azure(path_to_zip_package, container_name, folder=None, delete_after_upload=False, show_progress=False)

	Uploads a zip file package to an Azure container connected to a Preservica Cloud System

	Parameters:

	
	path_to_zip_package (str) – Path to the package

	container_name (str) – container connected to the ingest workflow

	folder (Folder) – The folder to ingest the package into

	delete_after_upload (bool) – Delete the local copy of the package after the upload has completed

	
upload_zip_package_to_S3(path_to_zip_package, bucket_name, folder=None, callback=None, delete_after_upload=False)

	Uploads a zip file package to an S3 bucket connected to a Preservica Cloud System

	Parameters:

	
	path_to_zip_package (str) – Path to the package

	bucket_name (str) – Bucket connected to an ingest workflow

	folder (Folder) – The folder to ingest the package into

	callback (Callable) – Optional callback to allow the callee to monitor the upload progress

	delete_after_upload (bool) – Delete the local copy of the package after the upload has completed

	
upload_zip_to_Source(path_to_zip_package, container_name, folder=None, delete_after_upload=False, show_progress=False)

	Uploads a zip file package to either an Azure container or S3 bucket
depending on the Preservica system deployment

	Parameters:

	
	path_to_zip_package (str) – Path to the package

	container_name (str) – container connected to the ingest workflow

	folder (Folder) – The folder to ingest the package into

	delete_after_upload (bool) – Delete the local copy of the package after the upload has completed

	show_progress (bool) – Show upload progress bar

Retention Management API

https://eu.preservica.com/api/entity/documentation.html#/%2Fretention-policies

	
class pyPreservica.RetentionPolicy(name: str, reference: str)

	

	
class pyPreservica.RetentionAssignment(entity_reference: str, policy_reference: str, api_id: str, start_date, expired=False)

	

	
class pyPreservica.RetentionAPI(username=None, password=None, tenant=None, server=None, use_shared_secret=False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	
	
add_assignments(entity: Entity, policy: RetentionPolicy) → RetentionAssignment

	Assign a retention policy to an Asset.

	Parameters:

	
	entity (Entity) – The Preservica Entity to assign a policy to

	policy (RetentionPolicy) – The RetentionAssignment

	Returns:

	The RetentionAssignment

	Return type:

	RetentionAssignment

	
assignable_policy(reference: str, status: bool)

	Make a policy assignable

	Parameters:

	
	reference (str) – The policy ID

	status (bool) – The assignable status

	Returns:

	

	
assignments(entity: Entity) → Set[RetentionAssignment]

	Return a list of retention policies for an entity.

	Parameters:

	entity (class:Entity) – The entity to fetch assignments for

	Returns:

	Set of policy assignments

	Return type:

	Set[RetentionAssignment]

	
create_policy(**kwargs)

	Create a new policy

Arguments are kwargs map

Name
Description
SecurityTag
StartDateField
Period
PeriodUnit
ExpiryAction
ExpiryActionParameters
Restriction
Assignable

	
delete_policy(reference: str)

	Delete a retention policy

	Parameters:

	reference (str) – The policy reference

	
policies() → Set[RetentionPolicy]

	Return a list of all retention policies
Only returns the first 250 policies in the system

	Returns:

	Set of retention policies

	Return type:

	Set[RetentionPolicy]

	
policy(reference: str) → RetentionPolicy

	
Return a retention policy by reference

	Parameters:

	reference (str) – The policy reference

	Returns:

	The retention policy

	Return type:

	RetentionPolicy

	
policy_by_name(name: str) → RetentionPolicy

	
Return a retention policy by name

	Parameters:

	name (str) – The policy name

	Returns:

	The retention policy

	Return type:

	RetentionPolicy

	
remove_assignments(retention_assignment: RetentionAssignment)

	Delete a retention policy from an asset

	Parameters:

	retention_assignment (RetentionAssignment) – The Preservica Entity to assign a policy to

	Returns:

	The Asset Reference

	Return type:

	str

	
update_policy(reference: str, **kwargs)

	Update an existing policy

Arguments are kwargs map

Name
Description
SecurityTag
StartDateField
Period
PeriodUnit
ExpiryAction
ExpiryActionParameters
Restriction
Assignable

Workflow API

Note

The Workflow API is available for Enterprise Preservica users

https://eu.preservica.com/api/admin/documentation.html

	
class pyPreservica.WorkflowContext(workflow_id, workflow_name: str)

	Defines a workflow context.
The workflow context is the pre-defined workflow which is ready to run

	
class pyPreservica.WorkflowInstance(instance_id: int)

	Defines a workflow Instance.
The workflow Instance is context which has been executed

	
class pyPreservica.WorkflowAPI(username: str | None = None, password: str | None = None, tenant: str | None = None, server: str | None = None, use_shared_secret: bool = False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	A class for calling the Preservica Workflow API

This API can be used to programmatically manage the Preservica Workflows.

https://preview.preservica.com/sdb/rest/workflow/documentation.html

	
get_workflow_contexts(definition: str)

	Return a list of Workflow Contexts which have the same Workflow Definition

	Parameters:

	definition (str) – The Workflow Definition ID

	Returns:

	List of Workflow Contexts

	Return type:

	list

	
get_workflow_contexts_by_type(workflow_type: str)

	Return a list of Workflow Contexts which have the same Workflow type

	Parameters:

	workflow_type (str) – The Workflow type Ingest, Access, Transformation or DataManagement

	Returns:

	List of Workflow Contexts

	Return type:

	list

	
start_workflow_instance(workflow_context: WorkflowContext, **kwargs)

	Start a workflow context

Returns a Correlation Id which is used to monitor the workflow progress

	Parameters:

	
	workflow_context (WorkflowContext) – The workflow context to start

	kwargs – Key/Values to pass to the workflow instance

	Returns:

	correlation_id

	Return type:

	str

	
terminate_workflow_instance(instance_ids)

	Terminate a workflow by its instance id

	Parameters:

	instance_ids (int or a list of int) – The Workflow instance

	
workflow_instance(instance_id: int) → WorkflowInstance

	Return a workflow instance by its Id

	Parameters:

	instance_id (int) – The Workflow instance

	Returns:

	workflow_instance

	Return type:

	WorkflowInstance

	
workflow_instances(workflow_state: str, workflow_type: str, **kwargs)

	Return a list of Workflow instances

	Parameters:

	
	workflow_state – The Workflow state Aborted, Active, Completed, Finished_Mixed_Outcome, Pending, Suspended, Unknown, or Failed

	workflow_type – The Workflow type Ingest, Access, Transformation or DataManagement

Administration and Management API

Note

The Administration and Management API needs to be enabled by the help desk.

https://eu.preservica.com/sdb/rest/workflow/documentation.html

	
class pyPreservica.AdminAPI(username: str | None = None, password: str | None = None, tenant: str | None = None, server: str | None = None, use_shared_secret: bool = False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	
	
add_security_tag(tag_name) → str

	Create a new security tag

	Parameters:

	tag_name (str) – The new security tag

	Returns:

	The new security tag

	Return type:

	str

	
add_system_role(role_name) → str

	Create a new user roles

	Parameters:

	role_name (str) – The new role

	Returns:

	The new role

	Return type:

	str

	
add_user(username: str, full_name: str, roles: list, externally_authenticated: bool = False)

	Add a new user

	Parameters:

	
	externally_authenticated

	username (str) – email address of the preservica user

	full_name (str) – Users real name

	roles (list) – List of roles assigned to the user

	Returns:

	dictionary of user attributes

	Return type:

	dict

	
add_xml_document(name: str, xml_data: Any, document_type: str = 'MetadataTemplate')

	Add a new XML document to Preservica
The default type of XML document is a descriptive metadata template

Options are:

MetadataDropdownLists -> Authority Lists
CustomIndexDefinition -> Custom Search Indexes
MetadataTemplate -> Metadata Template
UploadWizardConfigurationFile -> Upload Wizard Config
ConfigurationFile -> Heritrix Config File

	Parameters:

	
	name (str) – The name of the xml document

	xml_data – The xml schema as a UTF-8 string or as a file like object

	document_type (str) – The type of the XML document, defaults to descriptive metadata templates

	Returns:

	None

	Return type:

	None

	
add_xml_schema(name: str, description: str, originalName: str, xml_data: Any)

	Add a new XSD document to Preservica

	Parameters:

	
	name (str) – Name for the XSD schema

	description (str) – Description for the XSD schema

	originalName (str) – The original file name for the schema on disk

	xml_data (Any) – The xml schema as a UTF-8 string or a file like object

	Returns:

	None

	Return type:

	None

	
add_xml_transform(name: str, input_uri: str, output_uri: str, purpose: str, originalName: str, xml_data: Any)

	Add a new XML transform to Preservica

	Parameters:

	
	name (str) – The name of the XML transform

	input_uri (str) – The URI of the input XML document

	output_uri (str) – The URI of the output XML document

	purpose (str) – The purpose of the transform, “transform” , “edit”, “view”

	originalName (str) – The original file name of the transform

	xml_data (Any) – The transform xml as a string or file like object

	Returns:

	None

	Return type:

	None

	
all_users() → list

	Return a list of all users in the system

	Return list of usernames:

	

	Return type:

	list

	
change_user_display_name(username: str, new_display_name: str) → dict

	Change the user display name

	Parameters:

	
	username (str) – email address of the preservica user

	new_display_name (str) – Users real name

	Returns:

	dictionary of user attributes

	Return type:

	dict

	
delete_security_tag(tag_name)

	Delete a security tag

	Parameters:

	tag_name (str) – The security tag to delete

	
delete_system_role(role_name)

	Delete a system role

	Parameters:

	role_name (str) – The role to delete

	
delete_user(username: str)

	Delete a user

	Parameters:

	username (str) – email address of the preservica user

	
delete_xml_document(uri: str)

	Delete a XML document from Preservica

	Parameters:

	uri (str) – The URI of the xml document to delete

	Returns:

	None

	Return type:

	None

	
delete_xml_schema(uri: str)

	Delete an XML schema from Preservica

	Parameters:

	uri (str) – The URI of the xml schema to delete

	Returns:

	None

	Return type:

	None

	
delete_xml_transform(input_uri: str, output_uri: str)

	Delete a XSD document from Preservica

	Parameters:

	
	input_uri (str) – The URI of the input XML document

	output_uri (str) – The URI of the output XML document

	Returns:

	None

	Return type:

	None

	
disable_user(username)

	
Disable a Preservica User to prevent them logging in

	Parameters:

	username (str) – email address of the preservica user

	
enable_user(username)

	Enable a Preservica User

	Parameters:

	username (str) – email address of the preservica user

	
security_tags() → list

	List all the security tags in the system

	Returns:

	list of security tags

	Return type:

	list

	
system_roles() → list

	List all the user access roles in the system

	Returns:

	list of roles

	Return type:

	list

	
user_details(username: str) → dict

	Get the details of a user by their username

	Parameters:

	username (str) – email address of the preservica user

	Returns:

	dictionary of user attributes

	Return type:

	dict

	
user_report(report_name='users.csv')

	Create a report on all tenancy users
:return:

	
xml_document(uri: str) → str

	fetch the metadata XML document as a string by its URI

	Parameters:

	uri (str) – The URI of the xml document

	Returns:

	The XML document as a string

	Return type:

	str

	
xml_documents() → List

	fetch the list of XML documents stored in Preservica

	Returns:

	List of XML documents stored in Preservica

	Return type:

	list

	
xml_schema(uri: str) → str

	
fetch the metadata schema XSD document as a string by its URI

	Parameters:

	uri (str) – The URI of the xml schema

	Returns:

	The XML schema as a string

	Return type:

	str

	
xml_schemas() → List

	
fetch the list of metadata schema XSD documents stored in Preservica

	Returns:

	List of XML schema’s stored in Preservica

	Return type:

	list

	
xml_transform(input_uri: str, output_uri: str) → str

	fetch the XML transform as a string by its URIs

	Parameters:

	
	input_uri (str) – The URI of the input XML document

	output_uri (str) – The URI of the output XML document

	Returns:

	The XML transform as a string

	Return type:

	str

	
xml_transforms() → List

	fetch the list of xml transforms stored in Preservica

	Returns:

	List of XML transforms stored in Preservica

	Return type:

	list

Process Monitor API

https://us.preservica.com/api/processmonitor/documentation.html

	
class pyPreservica.MonitorStatus(value)

	An enumeration.

	
class pyPreservica.MonitorCategory(value)

	An enumeration.

	
class pyPreservica.MonitorAPI(username: str | None = None, password: str | None = None, tenant: str | None = None, server: str | None = None, use_shared_secret: bool = False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	A class for the Preservica Repository Process Monitor API

https://us.preservica.com/api/processmonitor/documentation.html

API for retrieving and updating monitoring information about processes.

	
messages(monitor_id, status: MessageStatus | None = None) → Generator

	List of messages for a process

	Parameters:

	
	monitor_id (str) – The Process ID

	status (MessageStatus) – The message status, info, warning, error etc

	Returns:

	Generator for each message, each message is a dict object

	
monitors(status: MonitorStatus | None = None, category: MonitorCategory | None = None) → Generator

	Get a filtered list of non-abandoned process monitors

	Parameters:

	
	status (MonitorStatus) – process status values (Pending, Running, Succeeded, Failed, Suspended, Recoverable)

	category (MonitorCategory) – process categories (Ingest, Export, DataManagement, Automated)

	Returns:

	Generator for each monitor

	
timeseries(monitor_id)

	Get the historical record of progress for a single monitor

	Parameters:

	monitor_id (str) – The Process ID

	Returns:

	List of timeseries information

WebHook API

https://us.preservica.com/api/webhook/documentation.html

	
class pyPreservica.TriggerType(value)

	Enumeration of the Web hooks Trigger Types

	
class pyPreservica.WebHooksAPI(username: str | None = None, password: str | None = None, tenant: str | None = None, server: str | None = None, use_shared_secret: bool = False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	Class to register new webhook endpoints

	
subscribe(url: str, triggerType: TriggerType, secret: str)

	Subscribe to a new web hook

	Parameters:

	
	url

	triggerType

	secret

	Returns:

	json_response

	
subscriptions()

	Return all the current active web hook subscriptions as a json document

	Returns:

	list of web hooks

	
unsubscribe(subscription_id: str)

	Unsubscribe from the provided webhook.

	Parameters:

	subscription_id

	Returns:

	

	
unsubscribe_all()

	Unsubscribe from all webhooks.
:return:

Authority Records API

https://eu.preservica.com/api/reference-metadata/documentation.html

This API is used for managing the Authority records within Preservica.

	
class pyPreservica.Table(reference: str, name: str, security_tag: str, displayField: str, metadataConnections: list)

	

	
class pyPreservica.AuthorityAPI(username: str | None = None, password: str | None = None, tenant: str | None = None, server: str | None = None, use_shared_secret: bool = False, two_fa_secret_key: str | None = None, protocol: str = 'https')

	
	
add_record(table: Table, record: dict)

	Add a new record to an existing table

	Parameters:

	
	table – The Table to add the record to

	record – The record

	Type:

	table: Table

	Type:

	record: dict

	Returns:

	A single record

	Return type:

	dict

	
add_records(table: Table, csv_file, encoding=None)

	Add new records to an existing table from a CSV document

	Parameters:

	
	table – The Table to add the record to

	csv_file – The path to the CSV document

	encoding – The encoding used to open the csv document

	Type:

	table: Table

	Type:

	csv_file: str

	Type:

	encoding: str

	
delete_record(reference: str)

	Delete a record from a table by its reference

	Parameters:

	reference – The reference of the record to delete

	Type:

	reference: str

	
record(reference: str) → dict

	Return a record by its reference

	Parameters:

	reference – The record reference

	Type:

	reference: str

	Returns:

	A single record

	Return type:

	dict

	
records(table: Table) → List[dict]

	Return all records from a table

	Parameters:

	table – The authority table

	Type:

	table: Table

	Returns:

	List of records

	Return type:

	list[dict]

	
table(reference: str) → Table

	fetch an authority table by its reference

	Parameters:

	reference – The reference for the authority table

	Type:

	reference: str

	Returns:

	An authority table

	Return type:

	Table

	
tables() → Set[Table]

	List reference metadata tables

	Returns:

	Set of authority tables

	Return type:

	set(Table)

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyPreservica	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	
 	active (pyPreservica.Generation attribute)

 	add_assignments() (pyPreservica.RetentionAPI method)

 	add_identifier() (pyPreservica.EntityAPI method)

 	add_metadata() (pyPreservica.EntityAPI method)

 	add_record() (pyPreservica.AuthorityAPI method)

 	add_records() (pyPreservica.AuthorityAPI method)

 	add_security_tag() (pyPreservica.AdminAPI method)

 	add_system_role() (pyPreservica.AdminAPI method)

 	add_thumbnail() (pyPreservica.EntityAPI method)

 	add_user() (pyPreservica.AdminAPI method)

 	add_xml_document() (pyPreservica.AdminAPI method)

 	
 	add_xml_schema() (pyPreservica.AdminAPI method)

 	add_xml_transform() (pyPreservica.AdminAPI method)

 	AdminAPI (class in pyPreservica)

 	all_descendants() (pyPreservica.EntityAPI method)

 	all_events() (pyPreservica.EntityAPI method)

 	all_users() (pyPreservica.AdminAPI method)

 	Asset (class in pyPreservica)

 	asset (pyPreservica.Representation attribute)

 	asset() (pyPreservica.EntityAPI method)

 	assignable_policy() (pyPreservica.RetentionAPI method)

 	assignments() (pyPreservica.RetentionAPI method)

 	AuthorityAPI (class in pyPreservica)

B

 	
 	Bitstream (class in pyPreservica)

 	
 	bitstream_content() (pyPreservica.EntityAPI method)

 	bitstreams (pyPreservica.Generation attribute)

C

 	
 	change_user_display_name() (pyPreservica.AdminAPI method)

 	children() (pyPreservica.EntityAPI method)

 	complex_asset_package() (in module pyPreservica)

 	content_object() (pyPreservica.EntityAPI method)

 	content_objects() (pyPreservica.EntityAPI method)

 	
 	ContentAPI (class in pyPreservica)

 	ContentObject (class in pyPreservica)

 	create_folder() (pyPreservica.EntityAPI method)

 	create_policy() (pyPreservica.RetentionAPI method)

 	cvs_to_xml() (in module pyPreservica)

D

 	
 	delete_asset() (pyPreservica.EntityAPI method)

 	delete_folder() (pyPreservica.EntityAPI method)

 	delete_identifiers() (pyPreservica.EntityAPI method)

 	delete_metadata() (pyPreservica.EntityAPI method)

 	delete_policy() (pyPreservica.RetentionAPI method)

 	delete_record() (pyPreservica.AuthorityAPI method)

 	delete_security_tag() (pyPreservica.AdminAPI method)

 	delete_system_role() (pyPreservica.AdminAPI method)

 	delete_user() (pyPreservica.AdminAPI method)

 	
 	delete_xml_document() (pyPreservica.AdminAPI method)

 	delete_xml_schema() (pyPreservica.AdminAPI method)

 	delete_xml_transform() (pyPreservica.AdminAPI method)

 	descendants() (pyPreservica.EntityAPI method)

 	description (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	disable_user() (pyPreservica.AdminAPI method)

 	download() (pyPreservica.EntityAPI method)

E

 	
 	effective_date (pyPreservica.Generation attribute)

 	enable_user() (pyPreservica.AdminAPI method)

 	Entity (class in pyPreservica)

 	entity() (pyPreservica.EntityAPI method)

 	entity_events() (pyPreservica.EntityAPI method)

 	entity_type (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	
 	EntityAPI (class in pyPreservica)

 	EntityType (class in pyPreservica)

 	export_opex() (pyPreservica.EntityAPI method)

F

 	
 	filename (pyPreservica.Bitstream attribute)

 	fixity (pyPreservica.Bitstream attribute)

 	Folder (class in pyPreservica)

 	
 	folder() (pyPreservica.EntityAPI method)

 	format_group (pyPreservica.Generation attribute)

 	formats (pyPreservica.Generation attribute)

G

 	
 	Generation (class in pyPreservica)

 	generations() (pyPreservica.EntityAPI method)

 	
 	get_async_progress() (pyPreservica.EntityAPI method)

 	get_workflow_contexts() (pyPreservica.WorkflowAPI method)

 	get_workflow_contexts_by_type() (pyPreservica.WorkflowAPI method)

I

 	
 	identifier() (pyPreservica.EntityAPI method)

 	identifiers_for_entity() (pyPreservica.EntityAPI method)

 	indexed_fields() (pyPreservica.ContentAPI method)

 	
 	ingest_tweet() (pyPreservica.UploadAPI method)

 	ingest_twitter_feed() (pyPreservica.UploadAPI method)

 	ingest_web_video() (pyPreservica.UploadAPI method)

 	IntegrityCheck (class in pyPreservica)

L

 	
 	length (pyPreservica.Bitstream attribute)

M

 	
 	messages() (pyPreservica.MonitorAPI method)

 	metadata (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	metadata() (pyPreservica.EntityAPI method)

 	metadata_for_entity() (pyPreservica.EntityAPI method)

 	
 module

 	pyPreservica

 	
 	MonitorAPI (class in pyPreservica)

 	MonitorCategory (class in pyPreservica)

 	monitors() (pyPreservica.MonitorAPI method)

 	MonitorStatus (class in pyPreservica)

 	move() (pyPreservica.EntityAPI method)

 	move_async() (pyPreservica.EntityAPI method)

 	move_sync() (pyPreservica.EntityAPI method)

N

 	
 	name (pyPreservica.Representation attribute)

O

 	
 	object_details() (pyPreservica.ContentAPI method)

 	
 	original (pyPreservica.Generation attribute)

P

 	
 	parent (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	policies() (pyPreservica.RetentionAPI method)

 	
 	policy() (pyPreservica.RetentionAPI method)

 	policy_by_name() (pyPreservica.RetentionAPI method)

 	properties (pyPreservica.Generation attribute)

 	
 pyPreservica

 	module

R

 	
 	record() (pyPreservica.AuthorityAPI method)

 	records() (pyPreservica.AuthorityAPI method)

 	reference (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	RelationshipDirection (class in pyPreservica)

 	remove_assignments() (pyPreservica.RetentionAPI method)

 	
 	remove_thumbnail() (pyPreservica.EntityAPI method)

 	rep_type (pyPreservica.Representation attribute)

 	replace_generation_async() (pyPreservica.EntityAPI method)

 	replace_generation_sync() (pyPreservica.EntityAPI method)

 	Representation (class in pyPreservica)

 	representations() (pyPreservica.EntityAPI method)

 	RetentionAPI (class in pyPreservica)

 	RetentionAssignment (class in pyPreservica)

 	RetentionPolicy (class in pyPreservica)

S

 	
 	save() (pyPreservica.EntityAPI method)

 	security_tag (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	security_tag_async() (pyPreservica.EntityAPI method)

 	security_tag_sync() (pyPreservica.EntityAPI method)

 	
 	security_tags() (pyPreservica.AdminAPI method)

 	simple_asset_package() (in module pyPreservica)

 	simple_search_csv() (pyPreservica.ContentAPI method)

 	simple_search_list() (pyPreservica.ContentAPI method)

 	start_workflow_instance() (pyPreservica.WorkflowAPI method)

 	subscribe() (pyPreservica.WebHooksAPI method)

 	subscriptions() (pyPreservica.WebHooksAPI method)

 	system_roles() (pyPreservica.AdminAPI method)

T

 	
 	Table (class in pyPreservica)

 	table() (pyPreservica.AuthorityAPI method)

 	tables() (pyPreservica.AuthorityAPI method)

 	terminate_workflow_instance() (pyPreservica.WorkflowAPI method)

 	thumbnail() (pyPreservica.EntityAPI method)

 	
 	timeseries() (pyPreservica.MonitorAPI method)

 	title (pyPreservica.Asset attribute)

 	(pyPreservica.ContentObject attribute)

 	(pyPreservica.Entity attribute)

 	(pyPreservica.Folder attribute)

 	TriggerType (class in pyPreservica)

U

 	
 	unsubscribe() (pyPreservica.WebHooksAPI method)

 	unsubscribe_all() (pyPreservica.WebHooksAPI method)

 	update_metadata() (pyPreservica.EntityAPI method)

 	update_policy() (pyPreservica.RetentionAPI method)

 	updated_entities() (pyPreservica.EntityAPI method)

 	upload_buckets() (pyPreservica.UploadAPI method)

 	upload_credentials() (pyPreservica.UploadAPI method)

 	
 	upload_locations() (pyPreservica.UploadAPI method)

 	upload_zip_package() (pyPreservica.UploadAPI method)

 	upload_zip_package_to_Azure() (pyPreservica.UploadAPI method)

 	upload_zip_package_to_S3() (pyPreservica.UploadAPI method)

 	upload_zip_to_Source() (pyPreservica.UploadAPI method)

 	UploadAPI (class in pyPreservica)

 	user_details() (pyPreservica.AdminAPI method)

 	user_report() (pyPreservica.AdminAPI method)

W

 	
 	WebHooksAPI (class in pyPreservica)

 	workflow_instance() (pyPreservica.WorkflowAPI method)

 	workflow_instances() (pyPreservica.WorkflowAPI method)

 	
 	WorkflowAPI (class in pyPreservica)

 	WorkflowContext (class in pyPreservica)

 	WorkflowInstance (class in pyPreservica)

X

 	
 	xml_document() (pyPreservica.AdminAPI method)

 	xml_documents() (pyPreservica.AdminAPI method)

 	xml_schema() (pyPreservica.AdminAPI method)

 	
 	xml_schemas() (pyPreservica.AdminAPI method)

 	xml_transform() (pyPreservica.AdminAPI method)

 	xml_transforms() (pyPreservica.AdminAPI method)

_images/entity-API.jpg
E Structural

Object

i

Information
Object

1

Representation

1

Content Object

X

Generation

I

Bitstream

_images/excel.png
/> 5 OneDrive - Preservica > Projects > |

metadata-spreadsheet

CSV UTF-8 (Comma delimited) (*.csv)

More options.

7 New Folder

rem

nav.xhtml

 Table of Contents

 		
 Welcome to pyPreservica’s documentation

 		
 Why Should I Use This?

 		
 SDK Features

 		
 Entity API Features

 		
 Content API Features

 		
 Upload API Features

 		
 Admin API Features

 		
 Retention Management API Features

 		
 Workflow API Features

 		
 Webhook API Features

 		
 Authority Records API Features

 		
 Background

 		
 PIP Installation

 		
 Get the Source Code

 		
 Contributing

 		
 Support

 		
 Examples

 		
 Authentication

 		
 2 Factor Authentication

 		
 SSL Certificates

 		
 Application Logging

 		
 Entity API

 		
 Fetching Entities (Assets, Folders & Content Objects)

 		
 Fetching Children of Entities

 		
 Creating new Folders

 		
 Adding Physical Assets

 		
 Updating Entities

 		
 Security Tags

 		
 3rd Party External Identifiers

 		
 Descriptive Metadata

 		
 Relationships Between Entities

 		
 Representations, Content Objects & Generations

 		
 Integrity Check History

 		
 Moving Entities

 		
 Deleting Entities

 		
 Finding Updated Entities

 		
 Downloading Files

 		
 Events on Specific Entities

 		
 Events Across Entities

 		
 Ingest Events

 		
 Asset and Folder Thumbnail Images

 		
 Replacing Content Objects

 		
 Export OPEX Package

 		
 Content API

 		
 object-details

 		
 indexed-fields

 		
 Search

 		
 Search Progress

 		
 Reporting Examples

 		
 Create a spreadsheet containing all Assets within the repository

 		
 Create a spreadsheet containing all Assets and Folders within the repository

 		
 Create a spreadsheet containing all Assets and Folders underneath a specific folder

 		
 User Security Tags

 		
 Upload API

 		
 Uploading Packages

 		
 Monitoring Upload Progress

 		
 Creating Packages

 		
 Creating Packages with Multiple Representations

 		
 Custom Fixity Generation

 		
 Bulk Package Creation

 		
 Package Examples

 		
 Ingest a single digital file as an asset, with a progress bar during upload, delete the package after upload has completed.

 		
 Ingest a single digital file as an asset, with a custom asset Title and Description

 		
 Ingest each jpeg file in a directory as an individual asset

 		
 Ingest a single digital file as an asset with a 3rd party identifier and custom metadata

 		
 Create a single Asset with 2 Representations (Preservation and Access) each Representation has 1 Content Object

 		
 Create a package with 1 Asset 2 Representations (Preservation and Access) and multiple Content Objects (one for every image)

 		
 Spreadsheet Metadata

 		
 Ingest Web Video

 		
 Ingest Twitter Feeds

 		
 Crawl and ingest from a filesystem

 		
 Workflow API

 		
 Fetching Workflow Contexts

 		
 Fetching Workflow Instances

 		
 Starting Workflows

 		
 Admin API

 		
 Metadata Management (XSD Schema’s, XML Documents & XSLT Transforms)

 		
 User Management

 		
 Security Tags

 		
 Retention API

 		
 Retention Policies

 		
 Retention Assignments

 		
 Registry API

 		
 Non-Authenticated Read Access

 		
 Monitor API

 		
 Monitors

 		
 Messages

 		
 Monitor Timeseries

 		
 WebHook API

 		
 Subscribing

 		
 Listing Subscriptions

 		
 Unsubscribe

 		
 Reference Web Server

 		
 Authority Records API

 		
 Authority Tables

 		
 Authority Records

 		
 Example Applications

 		
 Developer Interface

 		
 Entity API

 		
 EntityAPI

 		
 Generation

 		
 Bitstream

 		
 Representation

 		
 Entity

 		
 Asset

 		
 Folder

 		
 ContentObject

 		
 EntityType

 		
 RelationshipDirection

 		
 IntegrityCheck

 		
 Content API

 		
 ContentAPI

 		
 Upload API

 		
 simple_asset_package()

 		
 complex_asset_package()

 		
 cvs_to_xml()

 		
 UploadAPI

 		
 Retention Management API

 		
 RetentionPolicy

 		
 RetentionAssignment

 		
 RetentionAPI

 		
 Workflow API

 		
 WorkflowContext

 		
 WorkflowInstance

 		
 WorkflowAPI

 		
 Administration and Management API

 		
 AdminAPI

 		
 Process Monitor API

 		
 MonitorStatus

 		
 MonitorCategory

 		
 MonitorAPI

 		
 WebHook API

 		
 TriggerType

 		
 WebHooksAPI

 		
 Authority Records API

 		
 Table

 		
 AuthorityAPI

_images/simple_asset_package.png
H

E—

Asset

Key

Representations

Intellectual Entities

Bitstream: my-image.jpg)

_images/reference_md.png
